LIPIcs.ISAAC.2022.63.pdf
- Filesize: 0.76 MB
- 14 pages
Given two matroids ℳ₁ = (V, ℐ₁) and ℳ₂ = (V, ℐ₂) over an n-element integer-weighted ground set V, the weighted matroid intersection problem aims to find a common independent set S^* ∈ ℐ₁ ∩ ℐ₂ maximizing the weight of S^*. In this paper, we present a simple deterministic algorithm for weighted matroid intersection using Õ(nr^{3/4} log{W}) rank queries, where r is the size of the largest intersection of ℳ₁ and ℳ₂ and W is the maximum weight. This improves upon the best previously known Õ(nr log{W}) algorithm given by Lee, Sidford, and Wong [FOCS'15], and is the first subquadratic algorithm for polynomially-bounded weights under the standard independence or rank oracle models. The main contribution of this paper is an efficient algorithm that computes shortest-path trees in weighted exchange graphs.
Feedback for Dagstuhl Publishing