Creative Commons Attribution 4.0 International license
For a finite set of balls of radius r, the k-fold cover is the space covered by at least k balls. Fixing the ball centers and varying the radius, we obtain a nested sequence of spaces that is called the k-fold filtration of the centers. For k = 1, the construction is the union-of-balls filtration that is popular in topological data analysis. For larger k, it yields a cleaner shape reconstruction in the presence of outliers. We contribute a sparsification algorithm to approximate the topology of the k-fold filtration. Our method is a combination and adaptation of several techniques from the well-studied case k = 1, resulting in a sparsification of linear size that can be computed in expected near-linear time with respect to the number of input points.
@InProceedings{buchet_et_al:LIPIcs.SoCG.2023.20,
  author =	{Buchet, Micka\"{e}l and B. Dornelas, Bianca and Kerber, Michael},
  title =	{{Sparse Higher Order \v{C}ech Filtrations}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{20:1--20:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.20},
  URN =		{urn:nbn:de:0030-drops-178709},
  doi =		{10.4230/LIPIcs.SoCG.2023.20},
  annote =	{Keywords: Sparsification, k-fold cover, Higher order \v{C}ech complexes}
}