Finding Large Counterexamples by Selectively Exploring the Pachner Graph

Authors Benjamin A. Burton, Alexander He



PDF
Thumbnail PDF

File

LIPIcs.SoCG.2023.21.pdf
  • Filesize: 0.82 MB
  • 16 pages

Document Identifiers

Author Details

Benjamin A. Burton
  • The University of Queensland, Brisbane, Australia
Alexander He
  • The University of Queensland, Brisbane, Australia

Acknowledgements

We thank the referees for their helpful comments.

Cite As Get BibTex

Benjamin A. Burton and Alexander He. Finding Large Counterexamples by Selectively Exploring the Pachner Graph. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 21:1-21:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.SoCG.2023.21

Abstract

We often rely on censuses of triangulations to guide our intuition in 3-manifold topology. However, this can lead to misplaced faith in conjectures if the smallest counterexamples are too large to appear in our census. Since the number of triangulations increases super-exponentially with size, there is no way to expand a census beyond relatively small triangulations - the current census only goes up to 10 tetrahedra. Here, we show that it is feasible to search for large and hard-to-find counterexamples by using heuristics to selectively (rather than exhaustively) enumerate triangulations. We use this idea to find counterexamples to three conjectures which ask, for certain 3-manifolds, whether one-vertex triangulations always have a "distinctive" edge that would allow us to recognise the 3-manifold.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Topology
Keywords
  • Computational topology
  • 3-manifolds
  • Triangulations
  • Counterexamples
  • Heuristics
  • Implementation
  • Pachner moves
  • Bistellar flips

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Gennaro Amendola. A calculus for ideal triangulations of three-manifolds with embedded arcs. Math. Nachr., 278(9):975-994, 2005. URL: https://doi.org/10.1002/mana.200310285.
  2. David Bremner and Lars Schewe. Edge-graph diameter bounds for convex polytopes with few facets. Experiment. Math., 20(3):229-237, 2011. URL: https://doi.org/10.1080/10586458.2011.564965.
  3. Benjamin A. Burton. Detecting genus in vertex links for the fast enumeration of 3-manifold triangulations. In Proceedings of the 36th International Symposium on Symbolic and Algebraic Computation, pages 59-66. Association for Computing Machinery, 2011. URL: https://doi.org/10.1145/1993886.1993901.
  4. Benjamin A. Burton. Simplification paths in the Pachner graphs of closed orientable 3-manifold triangulations. arXiv:1110.6080, 2011. Google Scholar
  5. Benjamin A. Burton. Computational topology with Regina: Algorithms, heuristics and implementations. In Geometry and Topology Down Under, volume 597 of Contemporary Mathematics, pages 195-224. American Mathematical Society, 2013. URL: https://doi.org/10.1090/conm/597.
  6. Benjamin A. Burton. A new approach to crushing 3-manifold triangulations. Discrete Comput. Geom., 52:116-139, 2014. URL: https://doi.org/10.1007/s00454-014-9572-y.
  7. Benjamin A. Burton. The Next 350 Million Knots. In Sergio Cabello and Danny Z. Chen, editors, 36th International Symposium on Computational Geometry (SoCG 2020), volume 164 of Leibniz International Proceedings in Informatics (LIPIcs), pages 25:1-25:17. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.SoCG.2020.25.
  8. Benjamin A. Burton, Ryan Budney, William Pettersson, et al. Regina: Software for low-dimensional topology. https://regina-normal.github.io, 1999-2022.
  9. Benjamin A. Burton and Alexander He. Finding large counterexamples by selectively exploring the Pachner graph. arXiv:2303.06321, 2023. Google Scholar
  10. Benjamin A. Burton, Clément Maria, and Jonathan Spreer. Algorithms and complexity for Turaev-Viro invariants. Journal of Applied and Computational Topology, 2:33-53, 2018. URL: https://doi.org/10.1007/s41468-018-0016-2.
  11. Benjamin A. Burton and Melih Özlen. A fast branching algorithm for unknot recognition with experimental polynomial-time behaviour. arXiv:1211.1079, 2012. To appear in Math. Program. Google Scholar
  12. Benjamin A. Burton and Jonathan Spreer. The complexity of detecting taut angle structures on triangulations. In Proceedings of the 2013 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 168-183. Society for Industrial and Applied Mathematics, 2013. URL: https://doi.org/10.1137/1.9781611973105.13.
  13. Wolfgang Haken. Theorie der Normalflächen. Acta Math., 105:245-375, 1961. URL: https://doi.org/10.1007/BF02559591.
  14. Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger. The computational complexity of knot and link problems. J. ACM, 46(2):185-211, 1999. URL: https://doi.org/10.1145/301970.301971.
  15. Allen Hatcher. Notes on Basic 3-Manifold Topology. https://pi.math.cornell.edu/~hatcher/3M/3Mfds.pdf, 2007.
  16. William Jaco and J. Hyam Rubinstein. 0-efficient triangulations of 3-manifolds. J. Differential Geom., 65:61-168, 2003. URL: https://doi.org/10.4310/jdg/1090503053.
  17. William Jaco and Peter B. Shalen. A new decomposition theorem for irreducible sufficiently large 3-manifolds. In R. James Milgram, editor, Algebraic and Geometric Topology, Part 2, volume XXXII of Proceedings of Symposia in Pure Mathematics, pages 71-84. American Mathematical Society, 1978. URL: https://doi.org/10.1090/pspum/032.2.
  18. William Jaco and Jeffrey L. Tollefson. Algorithms for the complete decomposition of a closed 3-manifold. Illinois J. Math., 39(3):358-406, 1995. URL: https://doi.org/10.1215/ijm/1255986385.
  19. Klaus Johannson. Homotopy Equivalences of 3-Manifolds with Boundaries, volume 761 of Lecture Notes in Mathematics. Springer-Verlag, 1979. URL: https://doi.org/10.1007/BFb0085406.
  20. Victor Klee. Paths on polyhedra. II. Pacific J. Math., 17(2):249-262, 1966. URL: https://doi.org/10.2140/pjm.1966.17.249.
  21. Marc Lackenby and Saul Schleimer. Recognising elliptic manifolds. arXiv:2205.08802, 2022. Google Scholar
  22. Bruno Martelli and Carlo Petronio. Three-manifolds having complexity at most 9. Experiment. Math., 10(2):207-236, 2001. URL: https://doi.org/10.1080/10586458.2001.10504444.
  23. Sergei V. Matveev. Algorithmic Topology and Classification of 3-Manifolds, volume 9 of Algorithms and Computation in Mathematics. Springer-Verlag, second edition, 2007. URL: https://doi.org/10.1007/978-3-540-45899-9.
  24. Sergei V. Matveev. Atlas of 3-Manifolds. http://www.matlas.math.csu.ru/, accessed November 2022.
  25. Grisha Perelman. The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159, 2002. Google Scholar
  26. Grisha Perelman. Finite extinction time for the solutions to the Ricci flow on certain three-manifolds. arXiv:math/0307245, 2003. Google Scholar
  27. Grisha Perelman. Ricci flow with surgery on three-manifolds. arXiv:math/0303109, 2003. Google Scholar
  28. Riccardo Piergallini. Standard moves for standard polyhedra and spines. In III Convegno Nazionale Di Topologia: Trieste, 9-12 Giugno 1986 : Atti, number 18 in Rend. Circ. Mat. Palermo (2) Suppl., pages 391-414, 1988. URL: https://doi.org/11581/244540.
  29. J. Hyam Rubinstein. An algorithm to recognize the 3-sphere. In Proceedings of the International Congress of Mathematicians, pages 601-611. Birkhäuser, 1995. URL: https://doi.org/10.1007/978-3-0348-9078-6_54.
  30. J. Hyam Rubinstein, Henry Segerman, and Stephan Tillmann. Traversing three-manifold triangulations and spines. Enseign. Math., 65(1/2):155-206, 2019. URL: https://doi.org/10.4171/LEM/65-1/2-5.
  31. Francisco Santos. A counterexample to the Hirsch Conjecture. Ann. of Math., 176(1):383-412, 2012. URL: https://doi.org/10.4007/annals.2012.176.1.7.
  32. Abigail Thompson. Thin position and the recognition problem for S³. Math. Res. Lett., 1(5):613-630, 1994. URL: https://doi.org/10.4310/MRL.1994.v1.n5.a9.
  33. William P. Thurston. Three-Dimensional Geometry and Topology. Princeton University Press, 1997. URL: https://doi.org/10.1515/9781400865321.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail