@InProceedings{memoli_et_al:LIPIcs.SoCG.2023.51,
author = {M\'{e}moli, Facundo and Zhou, Ling},
title = {{Ephemeral Persistence Features and the Stability of Filtered Chain Complexes}},
booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)},
pages = {51:1--51:18},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-273-0},
ISSN = {1868-8969},
year = {2023},
volume = {258},
editor = {Chambers, Erin W. and Gudmundsson, Joachim},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.51},
URN = {urn:nbn:de:0030-drops-179014},
doi = {10.4230/LIPIcs.SoCG.2023.51},
annote = {Keywords: filtered chain complexes, Vietoris-Rips complexes, barcode, bottleneck distance, matching distance, Gromov-Hausdorff distance}
}