pdf-format: |
|
@InProceedings{memoli_et_al:LIPIcs.SoCG.2023.51, author = {M\'{e}moli, Facundo and Zhou, Ling}, title = {{Ephemeral Persistence Features and the Stability of Filtered Chain Complexes}}, booktitle = {39th International Symposium on Computational Geometry (SoCG 2023)}, pages = {51:1--51:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-273-0}, ISSN = {1868-8969}, year = {2023}, volume = {258}, editor = {Chambers, Erin W. and Gudmundsson, Joachim}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/opus/volltexte/2023/17901}, URN = {urn:nbn:de:0030-drops-179014}, doi = {10.4230/LIPIcs.SoCG.2023.51}, annote = {Keywords: filtered chain complexes, Vietoris-Rips complexes, barcode, bottleneck distance, matching distance, Gromov-Hausdorff distance} }
Keywords: | filtered chain complexes, Vietoris-Rips complexes, barcode, bottleneck distance, matching distance, Gromov-Hausdorff distance | |
Seminar: | 39th International Symposium on Computational Geometry (SoCG 2023) | |
Issue date: | 2023 | |
Date of publication: | 09.06.2023 |