LIPIcs.FORC.2023.5.pdf
- Filesize: 0.83 MB
- 22 pages
We consider the problem of helping agents improve by setting goals. Given a set of target skill levels, we assume each agent will try to improve from their initial skill level to the closest target level within reach (or do nothing if no target level is within reach). We consider two models: the common improvement capacity model, where agents have the same limit on how much they can improve, and the individualized improvement capacity model, where agents have individualized limits. Our goal is to optimize the target levels for social welfare and fairness objectives, where social welfare is defined as the total amount of improvement, and we consider fairness objectives when the agents belong to different underlying populations. We prove algorithmic, learning, and structural results for each model. A key technical challenge of this problem is the non-monotonicity of social welfare in the set of target levels, i.e., adding a new target level may decrease the total amount of improvement; agents who previously tried hard to reach a distant target now have a closer target to reach and hence improve less. This especially presents a challenge when considering multiple groups because optimizing target levels in isolation for each group and outputting the union may result in arbitrarily low improvement for a group, failing the fairness objective. Considering these properties, we provide algorithms for optimal and near-optimal improvement for both social welfare and fairness objectives. These algorithmic results work for both the common and individualized improvement capacity models. Furthermore, despite the non-monotonicity property and interference of the target levels, we show a placement of target levels exists that is approximately optimal for the social welfare of each group. Unlike the algorithmic results, this structural statement only holds in the common improvement capacity model, and we illustrate counterexamples of this result in the individualized improvement capacity model. Finally, we extend our algorithms to learning settings where we have only sample access to the initial skill levels of agents.
Feedback for Dagstuhl Publishing