The Sum-Product Algorithm For Quantitative Multiplicative Linear Logic

Authors Thomas Ehrhard , Claudia Faggian, Michele Pagani



PDF
Thumbnail PDF

File

LIPIcs.FSCD.2023.8.pdf
  • Filesize: 1.22 MB
  • 18 pages

Document Identifiers

Author Details

Thomas Ehrhard
  • Université de Paris Cité, CNRS, IRIF, F-75013, Paris, France
Claudia Faggian
  • Université de Paris Cité, CNRS, IRIF, F-75013, Paris, France
Michele Pagani
  • Université de Paris Cité, IRIF, F-75013, Paris, France

Cite As Get BibTex

Thomas Ehrhard, Claudia Faggian, and Michele Pagani. The Sum-Product Algorithm For Quantitative Multiplicative Linear Logic. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.FSCD.2023.8

Abstract

We consider an extension of multiplicative linear logic which encompasses bayesian networks and expresses samples sharing and marginalisation with the polarised rules of contraction and weakening. We introduce the necessary formalism to import exact inference algorithms from bayesian networks, giving the sum-product algorithm as an example of calculating the weighted relational semantics of a multiplicative proof-net improving runtime performance by storing intermediate results.

Subject Classification

ACM Subject Classification
  • Theory of computation → Linear logic
  • Theory of computation → Denotational semantics
  • Mathematics of computing → Variable elimination
Keywords
  • Linear Logic
  • Proof-Nets
  • Denotational Semantics
  • Probabilistic Programming

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Nick Benton, Gavin Bierman, Valeria de Paiva, and Martin Hyland. Linear lambda-calculus and categorical models revisited. In E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M. Richter, editors, Proceedings of the Sixth Workshop on Computer Science Logic, pages 61-84. Springer Verlag, 1993. URL: https://citeseer.ist.psu.edu/benton92linear.html.
  2. Antonio Bucciarelli and Thomas Ehrhard. On phase semantics and denotational semantics: the exponentials. Ann. Pure Appl. Logic, 109(3):205-241, 2001. Google Scholar
  3. Kenta Cho and Bart Jacobs. Disintegration and bayesian inversion via string diagrams. Math. Struct. Comput. Sci., 29(7):938-971, 2019. URL: https://doi.org/10.1017/S0960129518000488.
  4. Gregory F. Cooper. The computational complexity of probabilistic inference using bayesian belief networks. Artificial Intelligence, 42(2):393-405, 1990. URL: https://doi.org/10.1016/0004-3702(90)90060-D.
  5. Raphaëlle Crubillé. Probabilistic stable functions on discrete cones are power series. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages 275-284. ACM, 2018. URL: https://doi.org/10.1145/3209108.3209198.
  6. Vincent Danos and Thomas Ehrhard. Probabilistic coherence spaces as a model of higher-order probabilistic computation. Information and Computation, 209(6):966-991, 2011. Google Scholar
  7. Adnan Darwiche. Bayesian networks. In Frank van Harmelen, Vladimir Lifschitz, and Bruce W. Porter, editors, Handbook of Knowledge Representation, volume 3 of Foundations of Artificial Intelligence, pages 467-509. Elsevier, 2008. URL: https://doi.org/10.1016/S1574-6526(07)03011-8.
  8. Adnan Darwiche. Modeling and Reasoning with Bayesian Networks. Cambridge University Press, 2009. URL: http://www.cambridge.org/uk/catalogue/catalogue.asp?isbn=9780521884389.
  9. Lorenzo Tortora de Falco. The additive mutilboxes. Ann. Pure Appl. Log., 120(1-3):65-102, 2003. URL: https://doi.org/10.1016/S0168-0072(02)00042-8.
  10. Thomas Ehrhard. On Köthe sequence spaces and linear logic. Math. Struct. Comput. Sci., 12:579-623, 2002. Google Scholar
  11. Thomas Ehrhard. Finiteness spaces. Math. Struct. Comput. Sci., 15(4):615-646, 2005. Google Scholar
  12. Thomas Ehrhard. Differentials and distances in probabilistic coherence spaces. In Herman Geuvers, editor, 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, June 24-30, 2019, Dortmund, Germany, volume 131 of LIPIcs, pages 17:1-17:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.FSCD.2019.17.
  13. Thomas Ehrhard. Cones as a model of intuitionistic linear logic. In Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale Miller, editors, LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbrücken, Germany, July 8-11, 2020, pages 370-383. ACM, 2020. URL: https://doi.org/10.1145/3373718.3394758.
  14. Thomas Ehrhard, Michele Pagani, and Christine Tasson. Probabilistic Coherence Spaces are Fully Abstract for Probabilistic PCF. In P. Sewell, editor, The 41th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL14, San Diego, USA. ACM, 2014. URL: https://doi.org/10.1145/2535838.2535865.
  15. Thomas Ehrhard, Michele Pagani, and Christine Tasson. Full abstraction for probabilistic pcf. J. ACM, 65(4), April 2018. URL: https://doi.org/10.1145/3164540.
  16. Thomas Ehrhard, Michele Pagani, and Christine Tasson. Measurable cones and stable, measurable functions: a model for probabilistic higher-order programming. PACMPL, 2(POPL):59:1-59:28, 2018. URL: https://doi.org/10.1145/3158147.
  17. Thomas Ehrhard and Christine Tasson. Probabilistic call by push value. Log. Methods Comput. Sci., 15(1), 2019. URL: https://doi.org/10.23638/LMCS-15(1:3)2019.
  18. Jean-Yves Girard. Linear logic. Theor. Comput. Sci., 50:1-102, 1987. Google Scholar
  19. Jean-Yves Girard. A new constructive logic: classical logic. Math. Struct. Comput. Sci., 1(3):255-296, 1991. Google Scholar
  20. Jean-Yves Girard. Coherent banach spaces: a continuous denotational semantics. Theor. Comput. Sci., 227:297, 1999. Google Scholar
  21. Jean-Yves Girard. Between logic and quantic: a tract. In Thomas Ehrhard, Jean-Yves Girard, Paul Ruet, and Philip Scott, editors, Linear Logic in Computer Science, volume 316 of London Math. Soc. Lect. Notes Ser. CUP, 2004. Google Scholar
  22. Bart Jacobs, Aleks Kissinger, and Fabio Zanasi. Causal inference by string diagram surgery. In Mikolaj Bojanczyk and Alex Simpson, editors, Foundations of Software Science and Computation Structures - 22nd International Conference, FOSSACS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6-11, 2019, Proceedings, volume 11425 of Lecture Notes in Computer Science, pages 313-329. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-17127-8_18.
  23. Yves Lafont. From proof nets to interaction nets. In Jean-Yves Girard, Yves Lafont, and Laurent Regnier, editors, Advances in Linear Logic, volume 222 of London Math. Soc. Lect. Notes Ser., pages 225-247, 1995. Google Scholar
  24. Jim Laird, Giulio Manzonetto, Guy McCusker, and Michele Pagani. Weighted relational models of typed lambda-calculi. In 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013. IEEE Computer Society, June 2013. Google Scholar
  25. François Lamarche. Quantitative domains and infinitary algebras. Theor. Comput. Sci., 94(1):37-62, 1992. URL: https://doi.org/10.1016/0304-3975(92)90323-8.
  26. Hugo Paquet. Bayesian strategies: probabilistic programs as generalised graphical models. In Nobuko Yoshida, editor, Programming Languages and Systems - 30th European Symposium on Programming, ESOP 2021, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27 - April 1, 2021, Proceedings, volume 12648 of Lecture Notes in Computer Science, pages 519-547. Springer, 2021. URL: https://doi.org/10.1007/978-3-030-72019-3_19.
  27. Judea Pearl. Probabilistic reasoning in intelligent systems - networks of plausible inference. Morgan Kaufmann series in representation and reasoning. Morgan Kaufmann, 1989. Google Scholar
  28. Dario Stein and Sam Staton. Compositional semantics for probabilistic programs with exact conditioning. 2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-13, 2021. Google Scholar
  29. N. Zhang and D. Poole. A simple approach to bayesian network computations. In Proceedings of the 10th Biennial Canadian Artificial Intelligence Conference, pages 171-178. AAAI Press / The MIT Press, 1994. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail