LIPIcs.FSCD.2023.15.pdf
- Filesize: 0.84 MB
- 19 pages
Higher-order rewriting is a framework in which higher-order programs can be described by transformation rules on expressions. A computation occurs by transforming an expression into another using such rules. This step-by-step computation model induced by rewriting naturally gives rise to a notion of complexity as the number of steps needed to reduce expressions to a normal form, i.e., an expression that cannot be reduced further. The study of complexity analysis focuses on the development of automatable techniques to provide bounds to this number. In this paper, we consider a form of higher-order rewriting with a call-by-value evaluation strategy, so as to model call-by-value programs. We provide a cost-size semantics: a class of algebraic interpretations to map terms to tuples which bound both the reduction cost and the size of normal forms.
Feedback for Dagstuhl Publishing