 ,                
                            
                    Ambrus Kaposi
,                
                            
                    Ambrus Kaposi                     ,                
                            
                    Artjoms Šinkarovs
,                
                            
                    Artjoms Šinkarovs                     ,                
                            
                    Tamás Végh
,                
                            
                    Tamás Végh                     
                
                    
             Creative Commons Attribution 4.0 International license
                
    Creative Commons Attribution 4.0 International license
 
    It is well-known that extensional lambda calculus is equivalent to extensional combinatory logic. In this paper we describe a formalisation of this fact in Cubical Agda. The distinguishing features of our formalisation are the following: (i) Both languages are defined as generalised algebraic theories, the syntaxes are intrinsically typed and quotiented by conversion; we never mention preterms or break the quotients in our construction. (ii) Typing is a parameter, thus the un(i)typed and simply typed variants are special cases of the same proof. (iii) We define syntaxes as quotient inductive-inductive types (QIITs) in Cubical Agda; we prove the equivalence and (via univalence) the equality of these QIITs; we do not rely on any axioms, the conversion functions all compute and can be experimented with.
@InProceedings{altenkirch_et_al:LIPIcs.FSCD.2023.24,
  author =	{Altenkirch, Thorsten and Kaposi, Ambrus and \v{S}inkarovs, Artjoms and V\'{e}gh, Tam\'{a}s},
  title =	{{Combinatory Logic and Lambda Calculus Are Equal, Algebraically}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{24:1--24:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.24},
  URN =		{urn:nbn:de:0030-drops-180086},
  doi =		{10.4230/LIPIcs.FSCD.2023.24},
  annote =	{Keywords: Combinatory logic, lambda calculus, quotient inductive types, Cubical Agda}
}
                     archived version
  archived version
    
                            
                                             
                                                                                                            
                     
                                                                                                            
                     
                                                                                                            
                    