LIPIcs.FSCD.2023.27.pdf
- Filesize: 0.81 MB
- 18 pages
We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated) inductive definitions. Such theories are essential to proof theoretic analyses of certain "impredicative" theories; moreover, our cyclic systems naturally subsume Simpson’s Cyclic Arithmetic. Our main result is that cyclic and inductive systems for arithmetical inductive definitions are equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic proofs within second-order arithmetic by a form of induction on closure ordinals, thence appealing to conservativity results. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic, however we must further address a difficulty: the closure ordinals of our inductive definitions (around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around Bachmann-Howard), so explicit induction on their notations is not possible. For this reason, we rather rely on formalisation of the theory of (recursive) ordinals within second-order arithmetic.
Feedback for Dagstuhl Publishing