LIPIcs.ECRTS.2023.16.pdf
- Filesize: 0.89 MB
- 21 pages
Real-time locking protocols are typically designed to reduce any priority-inversion blocking (pi-blocking) a task may incur while waiting to access a shared resource. For the multiprocessor case, a number of such protocols have been developed that ensure asymptotically optimal pi-blocking bounds under job-level fixed-priority scheduling. Unfortunately, no optimal multiprocessor real-time locking protocols are known that ensure tight pi-blocking bounds under any scheduler. This paper presents the first such protocols. Specifically, protocols are presented for mutual exclusion, reader-writer synchronization, and k-exclusion that are optimal under first-in-first-out (FIFO) scheduling when schedulability analysis treats suspension times as computation. Experiments are presented that demonstrate the effectiveness of these protocols.
Feedback for Dagstuhl Publishing