Optimal Decremental Connectivity in Non-Sparse Graphs

Authors Anders Aamand, Adam Karczmarz , Jakub Łącki , Nikos Parotsidis , Peter M. R. Rasmussen , Mikkel Thorup



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.6.pdf
  • Filesize: 0.76 MB
  • 17 pages

Document Identifiers

Author Details

Anders Aamand
  • MIT, Cambridge, MA, USA
Adam Karczmarz
  • University of Warsaw, Poland
  • IDEAS NCBR, Warsaw, Poland
Jakub Łącki
  • Google Research, New York, NY,USA
Nikos Parotsidis
  • Google Research, Zürich, Switzerland
Peter M. R. Rasmussen
  • BARC, University of Copenhagen, Denmark
Mikkel Thorup
  • BARC, University of Copenhagen, Denmark

Cite As Get BibTex

Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis, Peter M. R. Rasmussen, and Mikkel Thorup. Optimal Decremental Connectivity in Non-Sparse Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 6:1-6:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.6

Abstract

We present a dynamic algorithm for maintaining the connected and 2-edge-connected components in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-)connected component in constant time. Our result is based on a general Monte-Carlo randomized reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on a sparse graph.
For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity algorithms handle all deletions in optimal linear total time, using existing algorithms for the respective fully-dynamic problems. This improves upon an O(m log (n² / m) + n poly log n)-time algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n²) edges.
Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs should be contrasted with an Ω(log n/log log n) worst-case time lower bound in the decremental setting [Alstrup, Husfeldt, and Rauhe FOCS'98] as well as an Ω(log n) amortized time lower-bound in the fully-dynamic setting [Patrascu and Demaine STOC'04].

Subject Classification

ACM Subject Classification
  • Theory of computation → Dynamic graph algorithms
  • Mathematics of computing → Paths and connectivity problems
  • Mathematics of computing → Graph algorithms
Keywords
  • decremental connectivity
  • dynamic connectivity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear measurements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 459-467. SIAM, 2012. URL: https://doi.org/10.1137/1.9781611973099.40.
  2. Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification, spanners, and subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini, editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5-14. ACM, 2012. URL: https://doi.org/10.1145/2213556.2213560.
  3. S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proceedings 39th Annual Symposium on Foundations of Computer Science (FOCS), pages 534-543, 1998. URL: https://doi.org/10.1109/SFCS.1998.743504.
  4. Stephen Alstrup, Jens P. Secher, and Mikkel Thorup. Word encoding tree connectivity works. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 498-499. ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338598.
  5. Stephen Alstrup, Jens Peter Secher, and Maz Spork. Optimal on-line decremental connectivity in trees. Information Processing Letters, 64(4):161-164, 1997. URL: https://doi.org/10.1016/S0020-0190(97)00170-1.
  6. Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral sparsification of graphs: theory and algorithms. Commun. ACM, 56(8):87-94, 2013. URL: https://doi.org/10.1145/2492007.2492029.
  7. Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay Solomon. Fully dynamic (Δ +1)-coloring in O(1) update time. ACM Trans. Algorithms, 18(2):10:1-10:25, 2022. URL: https://doi.org/10.1145/3494539.
  8. Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Saranurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity, flows, and beyond. CoRR, abs/1910.08025, 2019. URL: https://arxiv.org/abs/1910.08025.
  9. David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification - A technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669-696, 1997. URL: https://doi.org/10.1145/265910.265914.
  10. Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1-4, 1981. URL: https://doi.org/10.1145/322234.322235.
  11. Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207-216, 2005. URL: https://doi.org/10.1016/j.tcs.2005.09.013.
  12. Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with applications. SIAM J. Comput., 14(4):781-798, 1985. URL: https://doi.org/10.1137/0214055.
  13. M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (STOC), STOC '89, pages 345-354, New York, NY, USA, 1989. Association for Computing Machinery. URL: https://doi.org/10.1145/73007.73040.
  14. Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596-615, 1987. URL: https://doi.org/10.1145/28869.28874.
  15. Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching algorithms. J. Algorithms, 40(2):159-183, 2001. URL: https://doi.org/10.1006/jagm.2001.1167.
  16. Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint set union. J. Comput. Syst. Sci., 30(2):209-221, 1985. URL: https://doi.org/10.1016/0022-0000(85)90014-5.
  17. Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a graph on-line. SIAM J. Comput., 22(1):11-28, 1993. URL: https://doi.org/10.1137/0222002.
  18. Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar graphs. Algorithmica, 16(3):263-287, 1996. URL: https://doi.org/10.1007/BF01955676.
  19. Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages 792-799. IEEE, 2011. Google Scholar
  20. Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay Solomon. (1 + ε)-approximate incremental matching in constant deterministic amortized time. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 1886-1898. SIAM, 2019. URL: https://doi.org/10.1137/1.9781611975482.114.
  21. Monika Henzinger and Pan Peng. Constant-time dynamic (Δ +1)-coloring. ACM Trans. Algorithms, 18(2):16:1-16:21, 2022. URL: https://doi.org/10.1145/3501403.
  22. Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms with polylogarithmic time per operation. J. ACM, 46(4):502-516, 1999. URL: https://doi.org/10.1145/320211.320215.
  23. Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM, 48(4):723-760, July 2001. URL: https://doi.org/10.1145/502090.502095.
  24. Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental biconnectivity. CoRR, abs/1808.02568, 2018. URL: https://arxiv.org/abs/1808.02568.
  25. Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log^2 n) amortized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 35-52, 2018. URL: https://doi.org/10.1137/1.9781611975031.3.
  26. Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity in O(log n(log log n)^2) amortized expected time. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 510-520, 2017. URL: https://doi.org/10.1137/1.9781611974782.32.
  27. Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolynomial time (extended abstract). In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 861-872. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00088.
  28. Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1131-1142, 2013. URL: https://doi.org/10.1137/1.9781611973105.81.
  29. Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polylogarithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA '13, pages 1131-1142, USA, 2013. Society for Industrial and Applied Mathematics. Google Scholar
  30. David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper. Res., 24(2):383-413, 1999. URL: https://doi.org/10.1287/moor.24.2.383.
  31. Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster worst case deterministic dynamic connectivity. In 24th Annual European Symposium on Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 53:1-53:15, 2016. URL: https://doi.org/10.4230/LIPIcs.ESA.2016.53.
  32. Jakub Lacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. Theory Comput. Syst., 61(4):1037-1053, 2017. URL: https://doi.org/10.1007/s00224-016-9709-x.
  33. Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583-596, 1992. URL: https://doi.org/10.1007/BF01758778.
  34. Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum spanning forest with subpolynomial worst-case update time. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017, pages 950-961, 2017. URL: https://doi.org/10.1109/FOCS.2017.92.
  35. Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pages 546-553, New York, NY, USA, 2004. Association for Computing Machinery. URL: https://doi.org/10.1145/1007352.1007435.
  36. Mihai Pǎtraşcu and Mikkel Thorup. Don't rush into a union: take time to find your roots. In Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 559-568, 2011. URL: https://doi.org/10.1145/1993636.1993711.
  37. Shay Solomon. Fully dynamic maximal matching in constant update time. In Irit Dinur, editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325-334. IEEE Computer Society, 2016. URL: https://doi.org/10.1109/FOCS.2016.43.
  38. Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM, 22(2):215-225, April 1975. URL: https://doi.org/10.1145/321879.321884.
  39. Mikkel Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229-243, 1999. URL: https://doi.org/10.1006/jagm.1999.1033.
  40. Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR, USA, pages 343-350, 2000. URL: https://doi.org/10.1145/335305.335345.
  41. Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91-127, 2007. URL: https://doi.org/10.1007/s00493-007-0045-2.
  42. Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity. CoRR, abs/1510.04590, 2015. URL: https://arxiv.org/abs/1510.04590.
  43. Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757-1769. SIAM, 2013. URL: https://doi.org/10.1137/1.9781611973105.126.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail