Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

Authors Tobias Friedrich , Andreas Göbel , Maximilian Katzmann, Leon Schiller



PDF
Thumbnail PDF

File

LIPIcs.ICALP.2023.62.pdf
  • Filesize: 0.71 MB
  • 13 pages

Document Identifiers

Author Details

Tobias Friedrich
  • Hasso Plattner Institute, Universität Potsdam, Germany
Andreas Göbel
  • Hasso Plattner Institute, Universität Potsdam, Germany
Maximilian Katzmann
  • Karlsruhe Institute of Technology, Germany
Leon Schiller
  • Hasso Plattner Institute, Universität Potsdam, Germany

Cite As Get BibTex

Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller. Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs. In 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 261, pp. 62:1-62:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.ICALP.2023.62

Abstract

A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical observations, by focusing the studies on random graph models that are used to represent practical instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good representations of complex real-world networks, by expressing edge probabilities as a function that depends on (heterogeneous) vertex weights and distances in some underlying geometric space that the vertices are distributed in. While most of the parameters of the model are understood well, it was unclear how the dimensionality of the ground space affects the structure of the graphs.
In this paper, we complement existing research into the dimension of geometric random graph models and the ongoing study of determining the dimensionality of real-world networks, by studying how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how quickly the decay of the geometry impacts important graph structures. In particular, we study the expected number of cliques of a given size as well as the clique number and characterize phase transitions at which their behavior changes fundamentally. Finally, our insights help in better understanding previous results about the impact of the dimensionality on geometric random graphs.

Subject Classification

ACM Subject Classification
  • Mathematics of computing → Random graphs
  • Theory of computation → Computational geometry
Keywords
  • random graphs
  • geometry
  • dimensionality
  • cliques
  • clique number
  • scale-free networks

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. William Aiello, Fan Chung, and Linyuan Lu. A random graph model for power law graphs. Experimental Mathematics, 10(1):53-66, 2001. URL: https://doi.org/10.1080/10586458.2001.10504428.
  2. Pedro Almagro, Marián Boguñá, and M. Ángeles Serrano. Detecting the ultra low dimensionality of real networks. Nature Communications, 13(1):6096, 2022. URL: https://doi.org/10.1038/s41467-022-33685-z.
  3. Igor Artico, Igor E. Smolyarenko, Veronica Vinciotti, and Ernst C. Wit. How rare are power-law networks really? Proceedings of the Royal Society A, 476(2241):20190742, 2020. URL: https://doi.org/10.1098/rspa.2019.0742.
  4. Konstantin E. Avrachenkov and Andrei V. Bobu. Cliques in high-dimensional random geometric graphs. Appl. Netw. Sci., 5:1-24, December 2020. URL: https://doi.org/10.1007/s41109-020-00335-6.
  5. Thomas Bläsius and Philipp Fischbeck. On the External Validity of Average-Case Analyses of Graph Algorithms. In 30th Annual European Symposium on Algorithms (ESA 2022), pages 21:1-21:14, 2022. URL: https://doi.org/10.4230/LIPIcs.ESA.2022.21.
  6. Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck, and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic random graphs. Network Science, 10(4):361-380, 2022. URL: https://doi.org/10.1017/nws.2022.32.
  7. Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random graphs. Algorithmica, 80(8):2324-2344, 2018. URL: https://doi.org/10.1007/s00453-017-0323-3.
  8. Anthony Bonato, David F. Gleich, Myunghwan Kim, Dieter Mitsche, Paweł Prałat, Yanhua Tian, and Stephen J. Young. Dimensionality of social networks using motifs and eigenvalues. PLOS ONE, 9(9):1-7, 2014. URL: https://doi.org/10.1371/journal.pone.0106052.
  9. Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. Phase transitions for detecting latent geometry in random graphs. CoRR, August 2020. URL: https://arxiv.org/abs/1910.14167.
  10. Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Rácz. Testing for high-dimensional geometry in random graphs. CoRR, November 2015. URL: https://arxiv.org/abs/1411.5713.
  11. Fan Chung and Linyuan Lu. The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences, 99(25):15879-15882, 2002. URL: https://doi.org/10.1073/pnas.252631999.
  12. Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected Degree Sequences. Annals of Combinatorics, 6(25):125-145, 2002. URL: https://doi.org/10.1007/PL00012580.
  13. Jesper Dall and Michael Christensen. Random geometric graphs. Physical Review E, 66:016121, 2002. URL: https://doi.org/10.1103/PhysRevE.66.016121.
  14. Fraser Daly, Alastair Haig, and Seva Shneer. Asymptotics for cliques in scale-free random graphs. CoRR, August 2020. URL: https://arxiv.org/abs/2008.11557.
  15. Li Daqing, Kosmas Kosmidis, Armin Bunde, and Shlomo Havlin. Dimension of spatially embedded networks. Nature Physics, 7(6):481-484, 2011. URL: https://doi.org/10.1038/nphys1932.
  16. L. Decreusefond, E. Ferraz, H. Randriambololona, and A. Vergne. Simplicial homology of random configurations. Advances in Applied Probability, 46(2):325-347, June 2014. URL: https://doi.org/10.1239/aap/1401369697.
  17. Luc Devroye, András György, Gábor Lugosi, and Frederic Udina. High-dimensional random geometric graphs and their clique number. Electronic Journal of Probability, 16(none):2481-2508, January 2011. URL: https://doi.org/10.1214/EJP.v16-967.
  18. Vittorio Erba, Sebastiano Ariosto, Marco Gherardi, and Pietro Rotondo. Random geometric graphs in high dimension. Physical Review E, 102(1):012306, 2020. URL: https://doi.org/10.1103/PhysRevE.102.012306.
  19. P. Erdös and A. Rényi. On random graphs i. Publ. Math. Debrecen, 6, 1959. Google Scholar
  20. Nikolaos Fountoulakis and Tobias Müller. Law of Large Numbers for the Largest Component in a Hyperbolic Model of Complex Networks. The Annals of Applied Probability, 28(1):607-650, 2018. URL: https://doi.org/10.1214/17-AAP1314.
  21. Nikolaos Fountoulakis, Pim van der Hoorn, Tobias Müller, and Markus Schepers. Clustering in a Hyperbolic Model of Complex Networks. Electronic Journal of Probability, 26(none):1-132, 2021. URL: https://doi.org/10.1214/21-EJP583.
  22. Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller. Cliques in high-dimensional geometric inhomogeneous random graphs. CoRR, abs/2302.04113, 2023. URL: https://doi.org/10.48550/arXiv.2302.04113.
  23. Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM Journal on Discrete Mathematics, 32(2):1314-1334, 2018. URL: https://doi.org/10.1137/17M1123961.
  24. E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30:1141-1144, 1959. Google Scholar
  25. Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, and Filippo Radicchi. Principled approach to the selection of the embedding dimension of networks. Nature Communications, 12(1):3772, 2021. URL: https://doi.org/10.1038/s41467-021-23795-5.
  26. Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs: Degree sequence and clustering. In 39th International Colloquium on Automata, Languages, and Programming (ICALP), pages 573-585, 2012. URL: https://doi.org/10.1007/978-3-642-31585-5_51.
  27. Svante Janson, Tomasz Łuczak, and Ilkka Norros. Large cliques in a power-law random graph. Journal of Applied Probability, 47(4):1124-1135, December 2010. URL: https://doi.org/10.1239/jap/1294170524.
  28. Ralph Keusch. Geometric Inhomogeneous Random Graphs and Graph Coloring Games. Doctoral thesis, ETH Zurich, 2018. URL: https://doi.org/10.3929/ethz-b-000269658.
  29. Christoph Koch and Johannes Lengler. Bootstrap Percolation on Geometric Inhomogeneous Random Graphs. In 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), pages 147:1-147:15, 2016. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.147.
  30. Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82:036106, 2010. URL: https://doi.org/10.1103/PhysRevE.82.036106.
  31. Elizaveta Levina and Peter J. Bickel. Maximum likelihood estimation of intrinsic dimension. In Proceedings of the 17th International Conference on Neural Information Processing Systems, pages 777-784, 2004. Google Scholar
  32. Siqi Liu, Sidhanth Mohanty, Tselil Schramm, and Elizabeth Yang. Testing thresholds for high-dimensional sparse random geometric graphs. CoRR, November 2021. URL: https://arxiv.org/abs/2111.11316.
  33. Suqi Liu and Miklos Z. Racz. Phase transition in noisy high-dimensional random geometric graphs. CoRR, March 2021. URL: https://arxiv.org/abs/2103.15249.
  34. Riccardo Michielan and Clara Stegehuis. Cliques in geometric inhomogeneous random graphs. Journal of Complex Networks, 10(1), 2022. URL: https://doi.org/10.1093/comnet/cnac002.
  35. Mark Newman. Clustering and preferential attachment in growing networks. Physical Review E, 64:025102, 2001. URL: https://doi.org/10.1103/PhysRevE.64.025102.
  36. Mathew Penrose. Random Geometric Graphs. Oxford University Press, 2003. Google Scholar
  37. Martin Raič. A multivariate Berry-Esseen theorem with explicit constants. Bernoulli, 25(4A), November 2019. URL: https://doi.org/10.3150/18-BEJ1072.
  38. Matteo Serafino, Giulio Cimini, Amos Maritan, Andrea Rinaldo, Samir Suweis, Jayanth R. Banavar, and Guido Caldarelli. True scale-free networks hidden by finite size effects. Proceedings of the National Academy of Sciences, 118(2), 2021. URL: https://doi.org/10.1073/pnas.2013825118.
  39. Ivan Voitalov, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Krioukov. Scale-free networks well done. Physical Review Research, 1:033034, 2019. URL: https://doi.org/10.1103/PhysRevResearch.1.033034.
  40. Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks. Nature, 393:440-442, 1998. URL: https://doi.org/10.1038/30918.
  41. Weihua Yang and David Rideout. High dimensional hyperbolic geometry of complex networks. Mathematics, 8(11), 2020. URL: https://doi.org/10.3390/math8111861.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail