A central problem in computational statistics is to convert a procedure for sampling combinatorial objects into a procedure for counting those objects, and vice versa. We will consider sampling problems which come from Gibbs distributions, which are families of probability distributions over a discrete space Ω with probability mass function of the form μ^Ω_β(ω) ∝ e^{β H(ω)} for β in an interval [β_min, β_max] and H(ω) ∈ {0} ∪ [1, n]. The partition function is the normalization factor Z(β) = ∑_{ω ∈ Ω} e^{β H(ω)}, and the log partition ratio is defined as q = (log Z(β_max))/Z(β_min) We develop a number of algorithms to estimate the counts c_x using roughly Õ(q/ε²) samples for general Gibbs distributions and Õ(n²/ε²) samples for integer-valued distributions (ignoring some second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate with improved algorithms for counting connected subgraphs and perfect matchings in a graph.
@InProceedings{harris_et_al:LIPIcs.ICALP.2023.72, author = {Harris, David G. and Kolmogorov, Vladimir}, title = {{Parameter Estimation for Gibbs Distributions}}, booktitle = {50th International Colloquium on Automata, Languages, and Programming (ICALP 2023)}, pages = {72:1--72:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-278-5}, ISSN = {1868-8969}, year = {2023}, volume = {261}, editor = {Etessami, Kousha and Feige, Uriel and Puppis, Gabriele}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2023.72}, URN = {urn:nbn:de:0030-drops-181246}, doi = {10.4230/LIPIcs.ICALP.2023.72}, annote = {Keywords: Gibbs distribution, sampling} }
Feedback for Dagstuhl Publishing