LIPIcs.ICALP.2023.133.pdf
- Filesize: 0.81 MB
- 20 pages
At the core of the quest for a logic for Ptime is a mismatch between algorithms making arbitrary choices and isomorphism-invariant logics. One approach to tackle this problem is witnessed symmetric choice. It allows for choices from definable orbits certified by definable witnessing automorphisms. We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The latter operator evaluates a subformula in the structure defined by an interpretation. When similarly extending pure fixed-point logic (IFP), IFP+WSC+I simulates counting which IFP+WSC fails to do. For IFPC+WSC, it is unknown whether the interpretation operator increases expressiveness and thus allows studying the relation between WSC and interpretations beyond counting. In this paper, we separate IFPC+WSC from IFPC+WSC+I by showing that IFPC+WSC is not closed under FO-interpretations. By the same argument, we answer an open question of Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.
Feedback for Dagstuhl Publishing