Improved Learning from Kolmogorov Complexity

Authors Halley Goldberg, Valentine Kabanets



PDF
Thumbnail PDF

File

LIPIcs.CCC.2023.12.pdf
  • Filesize: 0.86 MB
  • 29 pages

Document Identifiers

Author Details

Halley Goldberg
  • Simon Fraser University, Burnaby, Canada
Valentine Kabanets
  • Simon Fraser University, Burnaby, Canada

Acknowledgements

We thank Shuichi Hirahara, Russell Impagliazzo, Zhenjian Lu, and Igor Oliveira for helpful discussions.

Cite As Get BibTex

Halley Goldberg and Valentine Kabanets. Improved Learning from Kolmogorov Complexity. In 38th Computational Complexity Conference (CCC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 264, pp. 12:1-12:29, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.CCC.2023.12

Abstract

Carmosino, Impagliazzo, Kabanets, and Kolokolova (CCC, 2016) showed that the existence of natural properties in the sense of Razborov and Rudich (JCSS, 1997) implies PAC learning algorithms in the sense of Valiant (Comm. ACM, 1984), for boolean functions in P/poly, under the uniform distribution and with membership queries. It is still an open problem to get from natural properties learning algorithms that do not rely on membership queries but rather use randomly drawn labeled examples. 
Natural properties may be understood as an average-case version of MCSP, the problem of deciding the minimum size of a circuit computing a given truth-table. Problems related to MCSP include those concerning time-bounded Kolmogorov complexity. MKTP, for example, asks for the KT-complexity of a given string. KT-complexity is a relaxation of circuit size, as it does away with the requirement that a short description of a string be interpreted as a boolean circuit. In this work, under assumptions of MKTP and the related problem MK^tP being easy on average, we get learning algorithms for boolean functions in P/poly that  
- work over any distribution D samplable by a family of polynomial-size circuits (given explicitly in the case of MKTP), 
- only use randomly drawn labeled examples from D, and 
- are agnostic (do not require the target function to belong to the hypothesis class).  Our results build upon the recent work of Hirahara and Nanashima (FOCS, 2021) who showed similar learning consequences but under a stronger assumption that NP is easy on average.

Subject Classification

ACM Subject Classification
  • Theory of computation → Computational complexity and cryptography
Keywords
  • learning
  • Kolmogorov complexity
  • meta-complexity
  • average-case complexity

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Eric Allender, Harry Buhrman, Michal Koucký, Dieter van Melkebeek, and Detlef Ronneburger. Power from random strings. SIAM J. Comput., 35(6):1467-1493, 2006. URL: https://doi.org/10.1137/050628994.
  2. Eric Allender, Joshua A. Grochow, Dieter van Melkebeek, Cristopher Moore, and Andrew Morgan. Minimum circuit size, graph isomorphism, and related problems. SIAM J. Comput., 47(4):1339-1372, 2018. URL: https://doi.org/10.1137/17M1157970.
  3. Luis Filipe Coelho Antunes and Lance Fortnow. Worst-case running times for average-case algorithms. In Proceedings of the 24th Annual IEEE Conference on Computational Complexity, CCC 2009, Paris, France, 15-18 July 2009, pages 298-303. IEEE Computer Society, 2009. URL: https://doi.org/10.1109/CCC.2009.12.
  4. Eric Binnendyk, Marco Carmosino, Antonina Kolokolova, R. Ramyaa, and Manuel Sabin. Learning with distributional inverters. In Sanjoy Dasgupta and Nika Haghtalab, editors, International Conference on Algorithmic Learning Theory, 29-1 April 2022, Paris, France, volume 167 of Proceedings of Machine Learning Research, pages 90-106. PMLR, 2022. URL: https://proceedings.mlr.press/v167/binnendyk22a.html.
  5. Avrim Blum, Merrick L. Furst, Michael J. Kearns, and Richard J. Lipton. Cryptographic primitives based on hard learning problems. In Douglas R. Stinson, editor, Advances in Cryptology - CRYPTO '93, 13th Annual International Cryptology Conference, Santa Barbara, California, USA, August 22-26, 1993, Proceedings, volume 773 of Lecture Notes in Computer Science, pages 278-291. Springer, 1993. URL: https://doi.org/10.1007/3-540-48329-2_24.
  6. Andrej Bogdanov and Alon Rosen. Pseudorandom functions: Three decades later. In Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 79-158. Springer International Publishing, 2017. URL: https://doi.org/10.1007/978-3-319-57048-8_3.
  7. Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput. Sci., 2(1), 2006. URL: https://doi.org/10.1561/0400000004.
  8. Dan Boneh, Yuval Ishai, Alain Passelègue, Amit Sahai, and David J. Wu. Exploring crypto dark matter: New simple PRF candidates and their applications. In Amos Beimel and Stefan Dziembowski, editors, Theory of Cryptography - 16th International Conference, TCC 2018, Panaji, India, November 11-14, 2018, Proceedings, Part II, volume 11240 of Lecture Notes in Computer Science, pages 699-729. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-03810-6_25.
  9. Harry Buhrman, Lance Fortnow, and Aduri Pavan. Some results on derandomization. Theory Comput. Syst., 38(2):211-227, 2005. URL: https://doi.org/10.1007/s00224-004-1194-y.
  10. Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning algorithms from natural proofs. In Ran Raz, editor, 31st Conference on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, volume 50 of LIPIcs, pages 10:1-10:24. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.10.
  11. Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Agnostic learning from tolerant natural proofs. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S. Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, August 16-18, 2017, Berkeley, CA, USA, volume 81 of LIPIcs, pages 35:1-35:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.35.
  12. Vitaly Feldman. Distribution-specific agnostic boosting. In Andrew Chi-Chih Yao, editor, Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China, January 5-7, 2010. Proceedings, pages 241-250. Tsinghua University Press, 2010. URL: http://conference.iiis.tsinghua.edu.cn/ICS2010/content/papers/20.html.
  13. Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor Carboni Oliveira. Probabilistic kolmogorov complexity with applications to average-case complexity. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 16:1-16:60. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. URL: https://doi.org/10.4230/LIPIcs.CCC.2022.16.
  14. Alexander Golovnev, Rahul Ilango, Russell Impagliazzo, Valentine Kabanets, Antonina Kolokolova, and Avishay Tal. AC^0[p] lower bounds against MCSP via the coin problem. In Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages 66:1-66:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.66.
  15. Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 247-258. IEEE Computer Society, 2018. URL: https://doi.org/10.1109/FOCS.2018.00032.
  16. Shuichi Hirahara and Mikito Nanashima. On worst-case learning in relativized heuristica. In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 751-758. IEEE, 2021. URL: https://doi.org/10.1109/FOCS52979.2021.00078.
  17. Rahul Ilango, Bruno Loff, and Igor Carboni Oliveira. Np-hardness of circuit minimization for multi-output functions. In Shubhangi Saraf, editor, 35th Computational Complexity Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume 169 of LIPIcs, pages 22:1-22:36. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.CCC.2020.22.
  18. Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than picking uniformly at random. In 31st Annual Symposium on Foundations of Computer Science, St. Louis, Missouri, USA, October 22-24, 1990, Volume II, pages 812-821. IEEE Computer Society, 1990. URL: https://doi.org/10.1109/FSCS.1990.89604.
  19. Russell Impagliazzo and Michael Luby. One-way functions are essential for complexity based cryptography (extended abstract). In 30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30 October - 1 November 1989, pages 230-235. IEEE Computer Society, 1989. URL: https://doi.org/10.1109/SFCS.1989.63483.
  20. Adam Kalai and Varun Kanade. Potential-based agnostic boosting. In Yoshua Bengio, Dale Schuurmans, John D. Lafferty, Christopher K. I. Williams, and Aron Culotta, editors, Advances in Neural Information Processing Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10 December 2009, Vancouver, British Columbia, Canada, pages 880-888. Curran Associates, Inc., 2009. URL: https://proceedings.neurips.cc/paper/2009/hash/13f9896df61279c928f19721878fac41-Abstract.html.
  21. Michael J. Kearns, Robert E. Schapire, and Linda Sellie. Toward efficient agnostic learning. Mach. Learn., 17(2-3):115-141, 1994. URL: https://doi.org/10.1007/BF00993468.
  22. Pravesh K. Kothari and Roi Livni. Improper learning by refuting. In Anna R. Karlin, editor, 9th Innovations in Theoretical Computer Science Conference, ITCS 2018, January 11-14, 2018, Cambridge, MA, USA, volume 94 of LIPIcs, pages 55:1-55:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ITCS.2018.55.
  23. Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applications, 4th Edition. Texts in Computer Science. Springer, 2019. URL: https://doi.org/10.1007/978-3-030-11298-1.
  24. Moni Naor and Eylon Yogev. Bloom filters in adversarial environments. ACM Trans. Algorithms, 15(3):35:1-35:30, 2019. URL: https://doi.org/10.1145/3306193.
  25. Noam Nisan and Avi Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149-167, 1994. URL: https://doi.org/10.1016/S0022-0000(05)80043-1.
  26. Rafail Ostrovsky and Avi Wigderson. One-way fuctions are essential for non-trivial zero-knowledge. In Second Israel Symposium on Theory of Computing Systems, ISTCS 1993, Natanya, Israel, June 7-9, 1993, Proceedings, pages 3-17. IEEE Computer Society, 1993. URL: https://doi.org/10.1109/ISTCS.1993.253489.
  27. Alexander A. Razborov and Steven Rudich. Natural proofs. J. Comput. Syst. Sci., 55(1):24-35, 1997. URL: https://doi.org/10.1006/jcss.1997.1494.
  28. Salil P. Vadhan. On learning vs. refutation. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 30th Conference on Learning Theory, COLT 2017, Amsterdam, The Netherlands, 7-10 July 2017, volume 65 of Proceedings of Machine Learning Research, pages 1835-1848. PMLR, 2017. URL: http://proceedings.mlr.press/v65/vadhan17a.html.
  29. Leslie G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134-1142, 1984. URL: https://doi.org/10.1145/1968.1972.
  30. Andrew Chi-Chih Yao. Theory and applications of trapdoor functions (extended abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago, Illinois, USA, 3-5 November 1982, pages 80-91. IEEE Computer Society, 1982. URL: https://doi.org/10.1109/SFCS.1982.45.
  31. Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the development of the concepts of information and randomness by means of the theory of algorithms. Russian Mathematical Surveys, 25(6):83, 1970. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail