LIPIcs.CCC.2023.21.pdf
- Filesize: 1.68 MB
- 23 pages
We study the problem of finding a Tarski fixed point over the k-dimensional grid [n]^k. We give a black-box reduction from the Tarski problem to the same problem with an additional promise that the input function has a unique fixed point. It implies that the Tarski problem and the unique Tarski problem have exactly the same query complexity. Our reduction is based on a novel notion of partial-information functions which we use to fool algorithms for the unique Tarski problem as if they were working on a monotone function with a unique fixed point.
Feedback for Dagstuhl Publishing