We study the advantages of quantum communication models over classical communication models that are equipped with a limited number of qubits of entanglement. In this direction, we give explicit partial functions on n bits for which reducing the entanglement increases the classical communication complexity exponentially. Our separations are as follows. For every k ≥ ~1: Q‖^* versus R2^*: We show that quantum simultaneous protocols with Θ̃(k⁵log³n) qubits of entanglement can exponentially outperform two-way randomized protocols with O(k) qubits of entanglement. This resolves an open problem from [Dmitry Gavinsky, 2008] and improves the state-of-the-art separations between quantum simultaneous protocols with entanglement and two-way randomized protocols without entanglement [Gavinsky, 2019; Girish et al., 2022]. R‖^* versus Q‖^*: We show that classical simultaneous protocols with Θ̃(k log n) qubits of entanglement can exponentially outperform quantum simultaneous protocols with O(k) qubits of entanglement, resolving an open question from [Gavinsky et al., 2006; Gavinsky, 2019]. The best result prior to our work was a relational separation against protocols without entanglement [Gavinsky et al., 2006]. R‖^* versus R1^*: We show that classical simultaneous protocols with Θ̃(k log n) qubits of entanglement can exponentially outperform randomized one-way protocols with O(k) qubits of entanglement. Prior to our work, only a relational separation was known [Dmitry Gavinsky, 2008].
@InProceedings{arunachalam_et_al:LIPIcs.CCC.2023.25, author = {Arunachalam, Srinivasan and Girish, Uma}, title = {{Trade-Offs Between Entanglement and Communication}}, booktitle = {38th Computational Complexity Conference (CCC 2023)}, pages = {25:1--25:23}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-282-2}, ISSN = {1868-8969}, year = {2023}, volume = {264}, editor = {Ta-Shma, Amnon}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2023.25}, URN = {urn:nbn:de:0030-drops-182957}, doi = {10.4230/LIPIcs.CCC.2023.25}, annote = {Keywords: quantum, communication complexity, exponential separation, boolean hidden matching, forrelation, xor lemma} }