LIPIcs.CCC.2023.31.pdf
- Filesize: 0.95 MB
- 21 pages
We prove lower bounds for the Minimum Circuit Size Problem (MCSP) in the Sum-of-Squares (SoS) proof system. Our main result is that for every Boolean function f: {0,1}ⁿ → {0,1}, SoS requires degree Ω(s^{1-ε}) to prove that f does not have circuits of size s (for any s > poly(n)). As a corollary we obtain that there are no low degree SoS proofs of the statement NP ⊈ P/poly. We also show that for any 0 < α < 1 there are Boolean functions with circuit complexity larger than 2^{n^α} but SoS requires size 2^{2^Ω(n^α)} to prove this. In addition we prove analogous results on the minimum monotone circuit size for monotone Boolean slice functions. Our approach is quite general. Namely, we show that if a proof system Q has strong enough constraint satisfaction problem lower bounds that only depend on good expansion of the constraint-variable incidence graph and, furthermore, Q is expressive enough that variables can be substituted by local Boolean functions, then the MCSP problem is hard for Q.
Feedback for Dagstuhl Publishing