LIPIcs.ITP.2023.18.pdf
- Filesize: 0.81 MB
- 18 pages
Higher-order probabilistic programs are used to describe statistical models and machine-learning mechanisms. The programming languages for them are equipped with three features: higher-order functions, sampling, and conditioning. In this paper, we propose an Isabelle/HOL library for probabilistic programs supporting all of those three features. We extend our previous quasi-Borel theory library in Isabelle/HOL. As a basis of the theory, we formalize s-finite kernels, which is considered as a theoretical foundation of first-order probabilistic programs and a key to support conditioning of probabilistic programs. We also formalize the Borel isomorphism theorem which plays an important role in the quasi-Borel theory. Using them, we develop the s-finite measure monad on quasi-Borel spaces. Our extension enables us to describe higher-order probabilistic programs with conditioning directly as an Isabelle/HOL term whose type is that of morphisms between quasi-Borel spaces. We also implement the qbs prover for checking well-typedness of an Isabelle/HOL term as a morphism between quasi-Borel spaces. We demonstrate several verification examples of higher-order probabilistic programs with conditioning.
Feedback for Dagstuhl Publishing