LIPIcs.SAT.2023.6.pdf
- Filesize: 0.88 MB
- 20 pages
Computing many useful properties of Boolean formulas, such as their weighted or unweighted model count, is intractable on general representations. It can become tractable when formulas are expressed in a special form, such as the decision-decomposable, negation normal form (dec-DNNF) . Knowledge compilation is the process of converting a formula into such a form. Unfortunately existing knowledge compilers provide no guarantee that their output correctly represents the original formula, and therefore they cannot validate a model count, or any other computed value. We present Partitioned-Operation Graphs (POGs), a form that can encode all of the representations used by existing knowledge compilers. We have designed CPOG, a framework that can express proofs of equivalence between a POG and a Boolean formula in conjunctive normal form (CNF). We have developed a program that generates POG representations from dec-DNNF graphs produced by the state-of-the-art knowledge compiler D4, as well as checkable CPOG proofs certifying that the output POGs are equivalent to the input CNF formulas. Our toolchain for generating and verifying POGs scales to all but the largest graphs produced by D4 for formulas from a recent model counting competition. Additionally, we have developed a formally verified CPOG checker and model counter for POGs in the Lean 4 proof assistant. In doing so, we proved the soundness of our proof framework. These programs comprise the first formally verified toolchain for weighted and unweighted model counting.
Feedback for Dagstuhl Publishing