Separating Automatic Relations

Authors Pablo Barceló , Diego Figueira , Rémi Morvan



PDF
Thumbnail PDF

File

LIPIcs.MFCS.2023.17.pdf
  • Filesize: 0.92 MB
  • 15 pages

Document Identifiers

Author Details

Pablo Barceló
  • Institute for Mathematical and Computational Engineering, Universidad Católica de Chile & CENIA & IMFD, Santiago, Chile
Diego Figueira
  • Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France
Rémi Morvan
  • Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR5800, F-33400 Talence, France

Cite As Get BibTex

Pablo Barceló, Diego Figueira, and Rémi Morvan. Separating Automatic Relations. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 17:1-17:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.MFCS.2023.17

Abstract

We study the separability problem for automatic relations (i.e., relations on finite words definable by synchronous automata) in terms of recognizable relations (i.e., finite unions of products of regular languages). This problem takes as input two automatic relations R and R', and asks if there exists a recognizable relation S that contains R and does not intersect R'. We show this problem to be undecidable when the number of products allowed in the recognizable relation is fixed. In particular, checking if there exists a recognizable relation S with at most k products of regular languages that separates R from R' is undecidable, for each fixed k ⩾ 2. Our proofs reveal tight connections, of independent interest, between the separability problem and the finite coloring problem for automatic graphs, where colors are regular languages.

Subject Classification

ACM Subject Classification
  • Theory of computation → Regular languages
Keywords
  • Automatic relations
  • recognizable relations
  • separability
  • finite colorability

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Pablo Barceló, Chih-Duo Hong, Xuan Bach Le, Anthony W. Lin, and Reino Niskanen. Monadic decomposability of regular relations. In International Colloquium on Automata, Languages and Programming (ICALP), pages 103:1-103:14, 2019. URL: https://doi.org/10.4230/LIPIcs.ICALP.2019.103.
  2. Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. Expressive languages for path queries over graph-structured data. ACM Transactions on Database Systems (TODS), 37(4):31, 2012. URL: https://doi.org/10.1145/2389241.2389250.
  3. Michael Benedikt, Leonid Libkin, Thomas Schwentick, and Luc Segoufin. Definable relations and first-order query languages over strings. Journal of the ACM, 50(5):694-751, 2003. URL: https://doi.org/10.1145/876638.876642.
  4. Pascal Bergsträßer, Moses Ganardi, Anthony W. Lin, and Georg Zetzsche. Ramsey quantifiers over automatic structures: Complexity and applications to verification. In Christel Baier and Dana Fisman, editors, Annual Symposium on Logic in Computer Science (LICS), pages 28:1-28:14. ACM, 2022. URL: https://doi.org/10.1145/3531130.3533346.
  5. Jean Berstel. Transductions and Context-Free Languages. Teubner-Verlag, 1979. Google Scholar
  6. Achim Blumensath. Monadic Second-Order Model Theory. Preprint of a book., 2023. Version of 2023-02-25. URL: https://www.fi.muni.cz/~blumens/MSO.pdf.
  7. Achim Blumensath and Erich Grädel. Automatic structures. In Annual Symposium on Logic in Computer Science (LICS), pages 51-62. IEEE Computer Society, 2000. Google Scholar
  8. Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision problems among the main subfamilies of rational relations. RAIRO - Theoretical Informatics and Applications, 40(2):255-275, 2006. URL: https://doi.org/10.1051/ita:2006005.
  9. Christian Choffrut. Relations over words and logic: A chronology. Bull. of the EATCS, 89:159-163, 2006. Google Scholar
  10. Lorenzo Clemente, Wojciech Czerwiński, Sławomir Lasota, and Charles Paperman. Regular separability of Parikh automata. In ICALP, pages 117:1-117:13, 2017. URL: https://doi.org/10.4230/LIPIcs.ICALP.2017.117.
  11. Wojciech Czerwiński, Wim Martens, Lorijn van Rooijen, Marc Zeitoun, and Georg Zetzsche. A characterization for decidable separability by piecewise testable languages. Discret. Math. Theor. Comput. Sci., 19(4), 2017. Google Scholar
  12. Calvin C. Elgot and Jorge E. Mezei. On relations defined by generalized finite automata. IBM J. Res. Dev., 9(1):47-68, 1965. URL: https://doi.org/10.1147/rd.91.0047.
  13. Christiane Frougny and Jacques Sakarovitch. Synchronized rational relations of finite and infinite words. Theor. Comput. Sci., 108(1):45-82, 1993. URL: https://doi.org/10.1016/0304-3975(93)90230-Q.
  14. Hajime Ishihara, Bakhadyr Khoussainov, and Sasha Rubin. Some results on automatic structures. In Annual Symposium on Logic in Computer Science (LICS), page 235. IEEE Computer Society, 2002. URL: https://doi.org/10.1007/11690634_22.
  15. Chris Köcher. Analyse der Entscheidbarkeit diverser Probleme in automatischen Graphen. Unpublished manuscript, 2014. URL: https://people.mpi-sws.org/~ckoecher/files/theses/bsc-thesis.pdf.
  16. Eryk Kopczyński. Invisible pushdown languages. In Annual Symposium on Logic in Computer Science (LICS), pages 867-872, 2016. URL: https://doi.org/10.1145/2933575.2933579.
  17. Dietrich Kuske and Markus Lohrey. Hamiltonicity of automatic graphs. In Giorgio Ausiello, Juhani Karhumäki, Giancarlo Mauri, and C.-H. Luke Ong, editors, IFIP, volume 273, pages 445-459. Springer, 2008. Google Scholar
  18. Dietrich Kuske and Markus Lohrey. Some natural decision problems in automatic graphs. J. Symb. Log., 75(2):678-710, 2010. URL: https://doi.org/10.2178/jsl/1268917499.
  19. Yves Lecerf. Machines de turing réversibles. récursive insolubilité en n ∈ 𝐍 de l'équation u = θⁿ u, ou θ est un «isomorphisme de codes». Comptes rendus hebdomadaires des séances de l'Académie des sciences, 257:2597-2600, 1963. Google Scholar
  20. Anthony W. Lin and Pablo Barceló. String solving with word equations and transducers: Towards a logic for analysing mutation XSS. In Annual Symposium on Principles of Programming Languages (POPL), pages 123-136. ACM, 2016. URL: https://doi.org/10.1145/2837614.2837641.
  21. Christof Löding and Christopher Spinrath. Decision problems for subclasses of rational relations over finite and infinite words. Discret. Math. Theor. Comput. Sci., 21(3), 2019. URL: https://doi.org/10.23638/DMTCS-21-3-4.
  22. Kenichi Morita. Reversible Turing Machines, pages 103-156. Springer Japan, Tokyo, 2017. URL: https://doi.org/10.1007/978-4-431-56606-9_5.
  23. Maurice Nivat. Transduction des langages de Chomsky. Ann. Inst. Fourier, 18:339-455, 1968. Google Scholar
  24. Thomas Place and Marc Zeitoun. Separating regular languages with first-order logic. Logical Methods in Computer Science (LMCS), 12(1), 2016. URL: https://doi.org/10.2168/LMCS-12(1:5)2016.
  25. Richard Edwin Stearns. A regularity test for pushdown machines. Information and Control, 11(3):323-340, 1967. URL: https://doi.org/10.1016/S0019-9958(67)90591-8.
  26. Peter Ungar and Blanche Descartes. k-Chromatic graphs without triangles. The American Mathematical Monthly, 61(5):352-353, 1954. URL: https://doi.org/10.2307/2307489.
  27. Leslie G. Valiant. Regularity and related problems for deterministic pushdown automata. Journal of the ACM, 22(1):1-10, 1975. URL: https://doi.org/10.1145/321864.321865.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail