,
Paweł Sobociński
Creative Commons Attribution 4.0 International license
We extend the theory of formal languages in monoidal categories to the multi-sorted, symmetric case, and show how this theory permits a graphical treatment of topics in concurrency. In particular, we show that Mazurkiewicz trace languages are precisely symmetric monoidal languages over monoidal distributed alphabets. We introduce symmetric monoidal automata, which define the class of regular symmetric monoidal languages. Furthermore, we prove that Zielonka’s asynchronous automata coincide with symmetric monoidal automata over monoidal distributed alphabets. Finally, we apply the string diagrams for symmetric premonoidal categories to derive serializations of traces.
@InProceedings{earnshaw_et_al:LIPIcs.MFCS.2023.43,
author = {Earnshaw, Matthew and Soboci\'{n}ski, Pawe{\l}},
title = {{String Diagrammatic Trace Theory}},
booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)},
pages = {43:1--43:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-292-1},
ISSN = {1868-8969},
year = {2023},
volume = {272},
editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.43},
URN = {urn:nbn:de:0030-drops-185770},
doi = {10.4230/LIPIcs.MFCS.2023.43},
annote = {Keywords: symmetric monoidal categories, Mazurkiewicz traces, asynchronous automata}
}