Strongly Finitary Monads for Varieties of Quantitative Algebras

Authors Jiří Adámek, Matěj Dostál , Jiří Velebil



PDF
Thumbnail PDF

File

LIPIcs.CALCO.2023.10.pdf
  • Filesize: 0.75 MB
  • 14 pages

Document Identifiers

Author Details

Jiří Adámek
  • Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
  • Institute for Theoretical Computer Science, Technische Universität Braunschweig, Germany
Matěj Dostál
  • Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic
Jiří Velebil
  • Department of Mathematics, Faculty of Electrical Engineering, Czech Technical University in Prague, Czech Republic

Cite As Get BibTex

Jiří Adámek, Matěj Dostál, and Jiří Velebil. Strongly Finitary Monads for Varieties of Quantitative Algebras. In 10th Conference on Algebra and Coalgebra in Computer Science (CALCO 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 270, pp. 10:1-10:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.CALCO.2023.10

Abstract

Quantitative algebras are algebras enriched in the category Met of metric spaces or UMet of ultrametric spaces so that all operations are nonexpanding. Mardare, Plotkin and Panangaden introduced varieties (aka 1-basic varieties) as classes of quantitative algebras presented by quantitative equations. We prove that, when restricted to ultrametrics, varieties bijectively correspond to strongly finitary monads T on UMet. This means that T is the left Kan extension of its restriction to finite discrete spaces. An analogous result holds in the category CUMet of complete ultrametric spaces.

Subject Classification

ACM Subject Classification
  • Theory of computation → Equational logic and rewriting
Keywords
  • quantitative algebras
  • ultra-quantitative algebras
  • strongly finitary monads
  • varieties

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. J. Adámek. Varieties of quantitative algebras and their monads. In Proceedings of the 37th Annual Symposium on Logic in Computer Science (LICS 2022), pages 1-12, 2022. Google Scholar
  2. J. Adámek, M. Dostál, and J. Velebil. A categorical view of varieties of ordered algebras. Math. Struct. Comput. Sci., 32(4):349-373, 2022. Google Scholar
  3. J. Adámek, M. Dostál, and J. Velebil. Quantitative algebras and a classification of metric monads, 2023. arXiv:2210.01565. Google Scholar
  4. J. Adámek and J. Rosický. Approximate injectivity and smallness in metric-enriched categories. J. Pure Appl. Algebra, 226:1-30, 2022. Google Scholar
  5. G. Bacci, R. Mardare, P. Panaganden, and G. D. Plotkin. An algebraic theory of Markov processes. In Proceedings of Logic in Computer Science (LICS 2018), pages 679-688. ACM, 2018. Google Scholar
  6. G. Bacci, R. Mardare, P. Panaganden, and G. D. Plotkin. Tensors of quantitative equational theories. In Proceedings of Coalgebraic and Algebraic Methods in Computer Science (CALCO 2021), 2021. Google Scholar
  7. M. Barr and Ch. Wells. Toposes, triples and theories. Springer-Verlag, New York, 1985. Google Scholar
  8. F. Borceux. Handbook of Categorical Algebra: Volume 2, Categories and Structures. Cambridge Univ. Press, 1994. Google Scholar
  9. J. Bourke and R. Garner. Monads and theories. Adv. Math., 351:1024-1071, 2019. Google Scholar
  10. E. J. Dubuc. Kan Extensions in Enriched Category Theory, volume 145 of Lecture Notes in Mathematics. Springer-Verlag, 1970. Google Scholar
  11. G. M. Kelly. Basic concepts of enriched category theory. Number 64 in London Math. Soc. Lecture Notes Series. Cambridge Univ. Press, 1982. Also available as Repr. Theory Appl. Categ. 10 (2005). Google Scholar
  12. G. M. Kelly and S. Lack. Finite-product-preserving functors, Kan extensions and strongly-finitary 2-monads. Appl. Categ. Structures, 1:85-94, 1993. Google Scholar
  13. A. Kurz and J. Velebil. Quasivarieties and varieties of ordered algebras: regularity and exactness. Math. Structures Comput. Sci., pages 1-42, 2016. Google Scholar
  14. S. Mac Lane. Categories for the working mathematician. Springer, 2nd edition, 1998. Google Scholar
  15. R. Mardare, P. Panangaden, and G. D. Plotkin. Quantitative algebraic reasoning. In Proceedings of Logic in Computer Science (LICS 2016), pages 700-709. IEEE Computer Science, 2016. Google Scholar
  16. R. Mardare, P. Panangaden, and G. D. Plotkin. On the axiomatizability of quantitative algebras. In Proceedings of Logic in Computer Science (LICS 2017), pages 1-12. IEEE Computer Science, 2017. Google Scholar
  17. M. Mio, R. Sarkis, and V. Vignudelli. Beyond nonexpansive operations in quantitative algebraic reasoning. In Proceedings of Logic in Computer Science (LICS 2022), pages 1-13, 2022. Article 52. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail