LIPIcs.CALCO.2023.12.pdf
- Filesize: 0.74 MB
- 17 pages
We provide a categorical notion called uncertain bisimilarity, which allows to reason about bisimilarity in combination with a lack of knowledge about the involved systems. Such uncertainty arises naturally in automata learning algorithms, where one investigates whether two observed behaviours come from the same internal state of a black-box system that can not be transparently inspected. We model this uncertainty as a set functor equipped with a partial order which describes possible future developments of the learning game. On such a functor, we provide a lifting-based definition of uncertain bisimilarity and verify basic properties. Beside its applications to Mealy machines, a natural model for automata learning, our framework also instantiates to an existing compatibility relation on suspension automata, which are used in model-based testing. We show that uncertain bisimilarity is a necessary but not sufficient condition for two states being implementable by the same state in the black-box system. We remedy the lack of sufficiency by a characterization of uncertain bisimilarity in terms of coalgebraic simulations.
Feedback for Dagstuhl Publishing