Online Matching with Set and Concave Delays

Authors Lindsey Deryckere, Seeun William Umboh



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2023.17.pdf
  • Filesize: 0.77 MB
  • 17 pages

Document Identifiers

Author Details

Lindsey Deryckere
  • School of Computer Science, The University of Sydney, Australia
Seeun William Umboh
  • School of Computing and Information Systems, The University of Melbourne, Australia

Cite As Get BibTex

Lindsey Deryckere and Seeun William Umboh. Online Matching with Set and Concave Delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 17:1-17:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.17

Abstract

We initiate the study of online problems with set delay, where the delay cost at any given time is an arbitrary function of the set of pending requests. In particular, we study the online min-cost perfect matching with set delay (MPMD-Set) problem, which generalises the online min-cost perfect matching with delay (MPMD) problem introduced by Emek et al. (STOC 2016). In MPMD, m requests arrive over time in a metric space of n points. When a request arrives the algorithm must choose to either match or delay the request. The goal is to create a perfect matching of all requests while minimising the sum of distances between matched requests, and the total delay costs incurred by each of the requests. In contrast to previous work we study MPMD-Set in the non-clairvoyant setting, where the algorithm does not know the future delay costs. We first show no algorithm is competitive in n or m. We then study the natural special case of size-based delay where the delay is a non-decreasing function of the number of unmatched requests. Our main result is the first non-clairvoyant algorithms for online min-cost perfect matching with size-based delay that are competitive in terms of m. In fact, these are the first non-clairvoyant algorithms for any variant of MPMD. A key technical ingredient is an analog of the symmetric difference of matchings that may be useful for other special classes of set delay. Furthermore, we prove a lower bound of Ω(n) for any deterministic algorithm and Ω(log n) for any randomised algorithm. These lower bounds also hold for clairvoyant algorithms. Finally, we also give an m-competitive deterministic algorithm for uniform concave delays in the clairvoyant setting.

Subject Classification

ACM Subject Classification
  • Theory of computation → Online algorithms
Keywords
  • online algorithms
  • matching
  • delay
  • non-clairvoyant

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. Itai Ashlagi, Yossi Azar, Moses Charikar, Ashish Chiplunkar, Ofir Geri, Haim Kaplan, Rahul Makhijani, Yuyi Wang, and Roger Wattenhofer. Min-cost bipartite perfect matching with delays. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2017, volume 81 of LIPIcs, pages 1:1-1:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017. URL: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.1.
  2. Yossi Azar, Andrei Z. Broder, and Mark S. Manasse. On-line choice of on-line algorithms. In Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms, pages 432-440. ACM/SIAM, 1993. URL: http://dl.acm.org/citation.cfm?id=313559.313847.
  3. Yossi Azar, Ashish Chiplunkar, and Haim Kaplan. Polylogarithmic bounds on the competitiveness of min-cost perfect matching with delays. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1051-1061. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.67.
  4. Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay - Clairvoyance is not required. In Proceedings of the 28th Annual European Symposium on Algorithms, ESA 2020, volume 173 of LIPIcs, pages 8:1-8:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. Google Scholar
  5. Yossi Azar, Yuval Emek, Rob van Stee, and Danny Vainstein. The price of clustering in bin-packing with applications to bin-packingwith delays. In Proceedings of the 31st ACM on Symposium on Parallelism in Algorithms and Architectures, SPAA 2019, pages 1-10. ACM, 2019. URL: https://doi.org/10.1145/3323165.3323180.
  6. Yossi Azar and Amit Jacob Fanani. Deterministic min-cost matching with delays. Theory Comput. Syst., 64(4):572-592, 2020. URL: https://doi.org/10.1007/s00224-019-09963-7.
  7. Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. ACM Trans. Algorithms, 17(3):23:1-23:31, 2021. URL: https://doi.org/10.1145/3459925.
  8. Yossi Azar, Runtian Ren, and Danny Vainstein. The min-cost matching with concave delays problem. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA 2021, pages 301-320. SIAM, 2021. URL: https://doi.org/10.1137/1.9781611976465.20.
  9. Yossi Azar and Noam Touitou. Beyond tree embeddings - A deterministic framework for network design with deadlines or delay. In Sandy Irani, editor, Proceedings of the 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 1368-1379. IEEE, 2020. URL: https://doi.org/10.1109/FOCS46700.2020.00129.
  10. Yair Bartal, Nova Fandina, and Seeun William Umboh. Online probabilistic metric embedding: A general framework for bypassing inherent bounds. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 1538-1557. SIAM, 2020. URL: https://doi.org/10.1137/1.9781611975994.95.
  11. Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. Online algorithms for multilevel aggregation. Oper. Res., 68(1):214-232, 2020. URL: https://doi.org/10.1287/opre.2019.1847.
  12. Marcin Bienkowski, Artur Kraska, Hsiang-Hsuan Liu, and Pawel Schmidt. A primal-dual online deterministic algorithm for matching with delays. In Approximation and Online Algorithms - Proceedings of the 16th International Workshop, WAOA 2018, Helsinki, Finland, August 23-24, 2018, Revised Selected Papers, volume 11312 of Lecture Notes in Computer Science, pages 51-68. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-04693-4_4.
  13. Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. A match in time saves nine: Deterministic online matching with delays. In Approximation and Online Algorithms - Proceedings of the 15th International Workshop, WAOA 2017, volume 10787 of Lecture Notes in Computer Science, pages 132-146. Springer, 2017. URL: https://doi.org/10.1007/978-3-319-89441-6_11.
  14. Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line. In Zvi Lotker and Boaz Patt-Shamir, editors, Structural Information and Communication Complexity - Proceedings of the 25th International Colloquium, SIROCCO 2018, Ma'ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, volume 11085 of Lecture Notes in Computer Science, pages 237-248. Springer, 2018. URL: https://doi.org/10.1007/978-3-030-01325-7_22.
  15. Allan Borodin, Nathan Linial, and Michael E. Saks. An optimal on-line algorithm for metrical task system. J. ACM, 39(4):745-763, 1992. URL: https://doi.org/10.1145/146585.146588.
  16. Sébastien Bubeck, Michael B. Cohen, James R. Lee, and Yin Tat Lee. Metrical task systems on trees via mirror descent and unfair gluing. SIAM J. Comput., 50(3):909-923, 2021. URL: https://doi.org/10.1137/19M1237879.
  17. Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive algorithm for online multi-level aggregation. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 1235-1244. SIAM, 2017. URL: https://doi.org/10.1137/1.9781611974782.80.
  18. Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint replenishment problem with delay. In Proceedings of the 49th International Colloquium on Automata, Languages, and Programming, ICALP 2022, volume 229 of LIPIcs, pages 40:1-40:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. Google Scholar
  19. Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: haste makes waste! In Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages 333-344. ACM, 2016. URL: https://doi.org/10.1145/2897518.2897557.
  20. Yuval Emek, Yaacov Shapiro, and Yuyi Wang. Minimum cost perfect matching with delays for two sources. Theor. Comput. Sci., 754:122-129, 2019. URL: https://doi.org/10.1016/j.tcs.2018.07.004.
  21. Leah Epstein. On bin packing with clustering and bin packing with delays. Discret. Optim., 41:100647, 2021. URL: https://doi.org/10.1016/j.disopt.2021.100647.
  22. Michel X. Goemans and David P. Williamson. A general approximation technique for constrained forest problems. SIAM J. Comput., 24(2):296-317, 1995. URL: https://doi.org/10.1137/S0097539793242618.
  23. Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125-1138. ACM, 2020. URL: https://doi.org/10.1145/3357713.3384277.
  24. Piotr Indyk, Avner Magen, Anastasios Sidiropoulos, and Anastasios Zouzias. Online embeddings. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 13th International Workshop, APPROX 2010, and proceedings of the 14th International Workshop, RANDOM 2010, volume 6302 of Lecture Notes in Computer Science, pages 246-259. Springer, 2010. Google Scholar
  25. Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020, December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages 61:1-61:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2020.61.
  26. Ngoc Mai Le, Seeun William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-level aggregation and set cover with delay. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023. To appear. Google Scholar
  27. Xingwu Liu, Zhida Pan, Yuyi Wang, and Roger Wattenhofer. Impatient online matching. In Proceedings of the 29th International Symposium on Algorithms and Computation, ISAAC 2018, volume 123 of LIPIcs, pages 62:1-62:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2018.62.
  28. Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay. In Proceedings of the 32nd International Symposium on Algorithms and Computation, ISAAC 2021, volume 212 of LIPIcs, pages 53:1-53:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. URL: https://doi.org/10.4230/LIPIcs.ISAAC.2021.53.
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail