LIPIcs.APPROX-RANDOM.2023.23.pdf
- Filesize: 0.85 MB
- 22 pages
Optimization problems often involve vector norms, which has led to extensive research on developing algorithms that can handle objectives beyond 𝓁_p norms. Our work introduces the concept of submodular norms, which are a versatile type of norms that possess marginal properties similar to submodular set functions. We show that submodular norms can either accurately represent or approximate well-known classes of norms, such as 𝓁_p norms, ordered norms, and symmetric norms. Furthermore, we establish that submodular norms can be applied to optimization problems such as online facility location and stochastic probing. This allows us to develop a logarithmic-competitive algorithm for online facility location with symmetric norms, and to prove logarithmic adaptivity gap for stochastic probing with symmetric norms.
Feedback for Dagstuhl Publishing