The Full Rank Condition for Sparse Random Matrices

Authors Amin Coja-Oghlan, Jane Gao, Max Hahn-Klimroth, Joon Lee, Noela Müller, Maurice Rolvien



PDF
Thumbnail PDF

File

LIPIcs.APPROX-RANDOM.2023.54.pdf
  • Filesize: 0.72 MB
  • 14 pages

Document Identifiers

Author Details

Amin Coja-Oghlan
  • Department of Computer Science, TU Dortmund, Germany
Jane Gao
  • Department of Combinatorics and Optimization, University of Waterloo, Canada
Max Hahn-Klimroth
  • Department of Computer Science, TU Dortmund, Germany
Joon Lee
  • Communication Theory Laboratory, École Polytechnique Fédérale de Lausanne, Switzerland
Noela Müller
  • Department of Mathematics and Computer Science, Eindhoven University of Technology, The Netherlands
Maurice Rolvien
  • Department of Computer Science, TU Dortmund, Germany

Cite As Get BibTex

Amin Coja-Oghlan, Jane Gao, Max Hahn-Klimroth, Joon Lee, Noela Müller, and Maurice Rolvien. The Full Rank Condition for Sparse Random Matrices. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 275, pp. 54:1-54:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023) https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2023.54

Abstract

We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank. Inspired by low-density parity check codes, the family of random matrices that we investigate is very general and encompasses both matrices over finite fields and {0,1}-matrices over the rationals. The proof combines statistical physics-inspired coupling techniques with local limit arguments.

Subject Classification

ACM Subject Classification
  • Mathematics of computing
  • Theory of computation → Error-correcting codes
Keywords
  • random matrices
  • rank
  • finite fields
  • rationals

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. D. Achlioptas and F. McSherry. Fast computation of low-rank matrix approximations. J. ACM, 54(2):9, 2007. Google Scholar
  2. D. Achlioptas and C. Moore. Random k-sat: Two moments suffice to cross a sharp threshold. SIAM J. Comput., 36(3):740-762, 2006. Google Scholar
  3. D. Achlioptas, A. Naor, and Y. Peres. Rigorous location of phase transitions in hard optimization problems. Nature, 435(7043):759-764, June 2005. Google Scholar
  4. M. Aizenman, R. Sims, and S. L. Starr. Extended variational principle for the sherrington-kirkpatrick spin-glass model. Phys. Rev. B, 68:214403, 2003. Google Scholar
  5. P. J. Ayre, A. Coja-Oghlan, P. Gao, and N. Müller. The satisfiability threshold for random linear equations. Comb., 40(2):179-235, 2020. Google Scholar
  6. G. V. Balakin. The distribution of the rank of random matrices over a finite field. Theory of Probability & Its Applications, 13(4):594-605, 1968. Google Scholar
  7. J. Blömer, R. Karp, and E. Welzl. The rank of sparse random matrices over finite fields. Random Struct. Algorithms, 10(4):407-419, 1997. Google Scholar
  8. C. Bordenave, M. Lelarge, and J. Salez. The rank of diluted random graphs. The Annals of Probability, 39(3):1097-1121, 2011. Google Scholar
  9. A. Coja-Oghlan, A. A. Ergür, P. Gao, S. Hetterich, and Rolvien M. The rank of sparse random matrices. Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, pages 579-591, 2020. Google Scholar
  10. A. Coja-Oghlan, N. Müller, and J.B. Ravelomanana. Belief propagation on the random k-sat model. CoRR, abs/2011.02303, 2020. URL: https://arxiv.org/abs/2011.02303.
  11. A. Coja-Oghlan and K. Panagiotou. Catching the k-naesat threshold. Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 - 22, 2012, pages 899-908, 2012. Google Scholar
  12. A. Coja-Oghlan and K. Panagiotou. The asymptotic k-sat threshold. Advances in Mathematics, 288:985-1068, 2016. Google Scholar
  13. C. Cooper, A. M. Frieze, and W. Pegden. On the rank of a random binary matrix. Electron. J. Comb., 26(4):4, 2019. Google Scholar
  14. K. P. Costello and V. H. Vu. The rank of random graphs. Random Struct. Algorithms, 33(3):269-285, 2008. Google Scholar
  15. K. P. Costello and V. H. Vu. On the rank of random sparse matrices. Comb. Probab. Comput., 19(3):321-342, 2010. Google Scholar
  16. M. Dietzfelbinger, A. Goerdt, M. Mitzenmacher, A. Montanari, R. Pagh, and M. Rink. Tight thresholds for cuckoo hashing via XORSAT. Proceedings of the 37th International Colloquium on Automata, Languages and Programming (ICALP 2010), 6198:213-225, 2010. Google Scholar
  17. J. Ding, A. Sly, and N. Sun. Proof of the satisfiability conjecture for large k. Proceedings of the 47th Annual ACM on Symposium on Theory of Computing (STOC 2015), pages 59-68, 2015. Google Scholar
  18. O. Dubois and J. Mandler. The 3-xorsat threshold. 43rd Symposium on Foundations of Computer Science (FOCS 2002), pages 769-778, 2002. Google Scholar
  19. A. Ferber, M. Kwan, A. Sah, and M. Sawhney. Singularity of the k-core of a random graph. Duke Mathematical Journal, 172(7):1293-1332, 2023. Google Scholar
  20. M. Glasgow, M. Kwan, A. Sah, and M. Sawhney. The exact rank of sparse random graphs. arXiv preprint, 2023. URL: https://arxiv.org/abs/2303.05435.
  21. A. Goerdt and L. Falke. Satisfiability thresholds beyond k- xorsat. Proceedings of the 7th International Computer Science Symposium in Russia (CSR 2012), pages 148-159, 2012. Google Scholar
  22. J. Huang. Invertibility of adjacency matrices for random d-regular graphs. Duke Mathematical Journal, 170(18):3977-4032, 2021. Google Scholar
  23. J. Kahn, J. Komlós, and E. Szemerédi. On the probability that a random±1-matrix is singular. Journal of the American Mathematical Society, 8(1):223-240, 1995. Google Scholar
  24. J. Komlós. On the determinant of (0-1) matrices. Studia Scientiarium Mathematicarum Hungarica, 2:7-21, 1967. Google Scholar
  25. I. Kovalenko. On the limit distribution of the number of solutions of a random system of linear equations in the class of boolean functions. Theory of Probability & Its Applications, 12(1):47-56, 1967. Google Scholar
  26. I. Kovalenko, A.A. Levitskaya, and MN Savchuk. Selected problems in probabilistic combinatorics. Naukova Dumka, Kiev, 1986. Google Scholar
  27. A. A. Levitskaya. Invariance theorems for a system of random linear equations over an arbitrary finite ring. Doklady Akademii Nauk, 263(2):289-291, 1982. Google Scholar
  28. A. A. Levitskaya. The probability of consistency of a system of random linear equations over an arbitrary finite ring. Theory of Probability & Its Applications, 30(2):364-375, 1986. Google Scholar
  29. A. Mészáros. The distribution of sandpile groups of random regular graphs. Transactions of the American Mathematical Society, 373(9):6529-6594, 2020. Google Scholar
  30. G. Miller and G. D. Cohen. The rate of regular LDPC codes. IEEE Trans. Inf. Theory, 49(11):2989-2992, 2003. Google Scholar
  31. B. Pittel and G. Sorkin. The satisfiability threshold for k-xorsat. Combinatorics, Probability and Computing, 25(2):236-268, 2016. Google Scholar
  32. T. Richardson and R. Urbanke. Modern Coding Theory. Cambridge University Press, 2008. Google Scholar
  33. T. Tao and V. H. Vu. On the singularity probability of random bernoulli matrices. Journal of the American Mathematical Society, 20, February 2005. Google Scholar
  34. K. Tikhomirov. Singularity of random bernoulli matrices. Annals of Mathematics, 191:593, March 2020. Google Scholar
  35. R. van der Hofstad, N. Müller, and H. Zhu. The rank of sparse symmetric matrices over arbitrary fields. arXiv preprint, 2023. URL: https://arxiv.org/abs/2301.12978.
  36. M. J. Wainwright, E. N. Maneva, and E. Martinian. Lossy source compression using low-density generator matrix codes: analysis and algorithms. IEEE Trans. Inf. Theory, 56(3):1351-1368, 2010. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail