LIPIcs.GIScience.2023.22.pdf
- Filesize: 1.32 MB
- 6 pages
The paper develops a novel approach to spatially and temporally varying coefficient (STVC) modelling, using Generalised Additive Models (GAMs) with Gaussian Process (GP) splines parameterised with location and time variables - a Geographic and Temporal Gaussian Process GAM (GTGP-GAM). This was applied to a Mongolian livestock case study and different forms of GTGP splines were evaluated in which space and time were combined or treated separately. A single 3-D spline with rescaled temporal and spatial attributes resulted in the best model under an assumption that for spatial and temporal processes interact a case studies with a sufficiently large spatial extent is needed. A fully tuned model was then created and the spline smoothing parameters were shown to indicate the degree of variation in covariate spatio-temporal interactions with the target variable.
Feedback for Dagstuhl Publishing