LIPIcs.CONCUR.2023.23.pdf
- Filesize: 1.16 MB
- 18 pages
We investigate the decidability of the {0,∞} fragment of Timed Propositional Temporal Logic (TPTL). We show that the satisfiability checking of TPTL^{0,∞} is PSPACE-complete. Moreover, even its 1-variable fragment (1-TPTL^{0,∞}) is strictly more expressive than Metric Interval Temporal Logic (MITL) for which satisfiability checking is EXPSPACE complete. Hence, we have a strictly more expressive logic with computationally easier satisfiability checking. To the best of our knowledge, TPTL^{0,∞} is the first multi-variable fragment of TPTL for which satisfiability checking is decidable without imposing any bounds/restrictions on the timed words (e.g. bounded variability, bounded time, etc.). The membership in PSPACE is obtained by a reduction to the emptiness checking problem for a new "non-punctual’’ subclass of Alternating Timed Automata with multiple clocks called Unilateral Very Weak Alternating Timed Automata (VWATA^{0,∞}) which we prove to be in PSPACE. We show this by constructing a simulation equivalent non-deterministic timed automata whose number of clocks is polynomial in the size of the given VWATA^{0,∞}.
Feedback for Dagstuhl Publishing