LIPIcs.CONCUR.2023.30.pdf
- Filesize: 0.83 MB
- 16 pages
Linearizability is a standard correctness criterion for concurrent algorithms, typically proved by establishing the algorithms' linearization points (LP). However, LPs often hinder abstraction, and for some algorithms such as the timestamped stack, it is unclear how to even identify their LPs. In this paper, we show how to develop declarative proofs of linearizability by foregoing LPs and instead employing axiomatization of so-called visibility relations. While visibility relations have been considered before for the timestamped stack, our study is the first to show how to derive the axiomatization systematically and intuitively from the sequential specification of the stack. In addition to the visibility relation, a novel separability relation emerges to generalize real-time precedence of procedure invocation. The visibility and separability relations have natural definitions for the timestamped stack, and enable a novel proof that reduces the algorithm to a simplified form where the timestamps are generated atomically.
Feedback for Dagstuhl Publishing