Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Deeksha Adil, Shunhua Jiang, and Rasmus Kyng. Acceleration Meets Inverse Maintenance: Faster 𝓁_∞-Regression. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 5:1-5:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{adil_et_al:LIPIcs.ICALP.2025.5,
author = {Adil, Deeksha and Jiang, Shunhua and Kyng, Rasmus},
title = {{Acceleration Meets Inverse Maintenance: Faster 𝓁\underline∞-Regression}},
booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
pages = {5:1--5:16},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-372-0},
ISSN = {1868-8969},
year = {2025},
volume = {334},
editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.5},
URN = {urn:nbn:de:0030-drops-233823},
doi = {10.4230/LIPIcs.ICALP.2025.5},
annote = {Keywords: Regression, Inverse Maintenance, Multiplicative Weights Update}
}
Published in: LIPIcs, Volume 334, 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)
Deeksha Adil and Thatchaphol Saranurak. Decremental (1+ε)-Approximate Maximum Eigenvector: Dynamic Power Method. In 52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 334, pp. 6:1-6:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{adil_et_al:LIPIcs.ICALP.2025.6,
author = {Adil, Deeksha and Saranurak, Thatchaphol},
title = {{Decremental (1+\epsilon)-Approximate Maximum Eigenvector: Dynamic Power Method}},
booktitle = {52nd International Colloquium on Automata, Languages, and Programming (ICALP 2025)},
pages = {6:1--6:19},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-372-0},
ISSN = {1868-8969},
year = {2025},
volume = {334},
editor = {Censor-Hillel, Keren and Grandoni, Fabrizio and Ouaknine, Jo\"{e}l and Puppis, Gabriele},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2025.6},
URN = {urn:nbn:de:0030-drops-233834},
doi = {10.4230/LIPIcs.ICALP.2025.6},
annote = {Keywords: Power Method, Dynamic Algorithms}
}
Published in: LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)
Deeksha Adil, Brian Bullins, Rasmus Kyng, and Sushant Sachdeva. Almost-Linear-Time Weighted 𝓁_p-Norm Solvers in Slightly Dense Graphs via Sparsification. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{adil_et_al:LIPIcs.ICALP.2021.9,
author = {Adil, Deeksha and Bullins, Brian and Kyng, Rasmus and Sachdeva, Sushant},
title = {{Almost-Linear-Time Weighted 𝓁\underlinep-Norm Solvers in Slightly Dense Graphs via Sparsification}},
booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)},
pages = {9:1--9:15},
series = {Leibniz International Proceedings in Informatics (LIPIcs)},
ISBN = {978-3-95977-195-5},
ISSN = {1868-8969},
year = {2021},
volume = {198},
editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James},
publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
address = {Dagstuhl, Germany},
URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.9},
URN = {urn:nbn:de:0030-drops-140782},
doi = {10.4230/LIPIcs.ICALP.2021.9},
annote = {Keywords: Weighted 𝓁\underlinep-norm, Sparsification, Spanners, Iterative Refinement}
}