Search Results

Documents authored by Amir, Talley


Document
Approximate Majority with Catalytic Inputs

Authors: Talley Amir, James Aspnes, and John Lazarsfeld

Published in: LIPIcs, Volume 184, 24th International Conference on Principles of Distributed Systems (OPODIS 2020)


Abstract
Population protocols [Dana Angluin et al., 2006] are a class of algorithms for modeling distributed computation in networks of finite-state agents communicating through pairwise interactions. Their suitability for analyzing numerous chemical processes has motivated the adaptation of the original population protocol framework to better model these chemical systems. In this paper, we further the study of two such adaptations in the context of solving approximate majority: persistent-state agents (or catalysts) and spontaneous state changes (or leaks). Based on models considered in recent protocols for populations with persistent-state agents [Bartlomiej Dudek and Adrian Kosowski, 2018; Alistarh et al., 2017; Dan Alistarh et al., 2020], we assume a population with n catalytic input agents and m worker agents, and the goal of the worker agents is to compute some predicate over the states of the catalytic inputs. We call this model the Catalytic Input (CI) model. For m = Θ(n), we show that computing the parity of the input population with high probability requires at least Ω(n²) total interactions, demonstrating a strong separation between the CI model and the standard population protocol model. On the other hand, we show that the simple third-state dynamics [Angluin et al., 2008; Perron et al., 2009] for approximate majority in the standard model can be naturally adapted to the CI model: we present such a constant-state protocol for the CI model that solves approximate majority in O(n log n) total steps with high probability when the input margin is Ω(√{n log n}). We then show the robustness of third-state dynamics protocols to the transient leaks events introduced by [Alistarh et al., 2017; Dan Alistarh et al., 2020]. In both the original and CI models, these protocols successfully compute approximate majority with high probability in the presence of leaks occurring at each step with probability β ≤ O(√{n log n}/n). The resilience of these dynamics to leaks exhibits similarities to previous work involving Byzantine agents, and we define and prove a notion of equivalence between the two.

Cite as

Talley Amir, James Aspnes, and John Lazarsfeld. Approximate Majority with Catalytic Inputs. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 184, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.OPODIS.2020.19,
  author =	{Amir, Talley and Aspnes, James and Lazarsfeld, John},
  title =	{{Approximate Majority with Catalytic Inputs}},
  booktitle =	{24th International Conference on Principles of Distributed Systems (OPODIS 2020)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-176-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{184},
  editor =	{Bramas, Quentin and Oshman, Rotem and Romano, Paolo},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.OPODIS.2020.19},
  URN =		{urn:nbn:de:0030-drops-135040},
  doi =		{10.4230/LIPIcs.OPODIS.2020.19},
  annote =	{Keywords: population protocols, approximate majority, catalysts, leaks, lower bound}
}
Document
Message Complexity of Population Protocols

Authors: Talley Amir, James Aspnes, David Doty, Mahsa Eftekhari, and Eric Severson

Published in: LIPIcs, Volume 179, 34th International Symposium on Distributed Computing (DISC 2020)


Abstract
The standard population protocol model assumes that when two agents interact, each observes the entire state of the other. We initiate the study of message complexity for population protocols, where an agent’s state is divided into an externally-visible message and externally-hidden local state. We consider the case of O(1) message complexity. When time is unrestricted, we obtain an exact characterization of the stably computable predicates based on the number of internal states s(n): If s(n) = o(n) then the protocol computes semilinear predicates (unlike the original model, which can compute non-semilinear predicates with s(n) = O(log n)), and otherwise it computes a predicate decidable by a nondeterministic O(n log s(n))-space-bounded Turing machine. We then introduce novel O(polylog(n)) expected time protocols for junta/leader election and general purpose broadcast correct with high probability, and approximate and exact population size counting correct with probability 1. Finally, we show that the main constraint on the power of bounded-message-size protocols is the size of the internal states: with unbounded internal states, any computable function can be computed with probability 1 in the limit by a protocol that uses only 1-bit messages.

Cite as

Talley Amir, James Aspnes, David Doty, Mahsa Eftekhari, and Eric Severson. Message Complexity of Population Protocols. In 34th International Symposium on Distributed Computing (DISC 2020). Leibniz International Proceedings in Informatics (LIPIcs), Volume 179, pp. 6:1-6:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{amir_et_al:LIPIcs.DISC.2020.6,
  author =	{Amir, Talley and Aspnes, James and Doty, David and Eftekhari, Mahsa and Severson, Eric},
  title =	{{Message Complexity of Population Protocols}},
  booktitle =	{34th International Symposium on Distributed Computing (DISC 2020)},
  pages =	{6:1--6:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-168-9},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{179},
  editor =	{Attiya, Hagit},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.DISC.2020.6},
  URN =		{urn:nbn:de:0030-drops-130848},
  doi =		{10.4230/LIPIcs.DISC.2020.6},
  annote =	{Keywords: population protocol, message complexity, space-optimal}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail