Search Results

Documents authored by Anderson, Taylor


Document
Short Paper
A Data-Driven Decision-Making Framework for Spatial Agent-Based Models of Infectious Disease Spread (Short Paper)

Authors: Emma Von Hoene, Amira Roess, and Taylor Anderson

Published in: LIPIcs, Volume 277, 12th International Conference on Geographic Information Science (GIScience 2023)


Abstract
Agent-based models (ABMs) are powerful tools used for better understanding, predicting, and responding to diseases. ABMs are well-suited to represent human health behaviors, a key driver of disease spread. However, many existing ABMs of infectious respiratory disease spread oversimplify or ignore behavioral aspects due to limited data and the variety of behavioral theories available. Therefore, this study aims to develop and implement a data-driven framework for agent decision-making related to health behaviors in geospatial ABMs of infectious disease spread. The agent decision-making framework uses a logistic regression model expressed in the form of odds ratios to calculate the probability of adopting a behavior. The framework is integrated into a geospatial ABM that simulates the spread of COVID-19 and mask usage among the student population at George Mason University in Fall 2021. The framework leverages odds ratios, which can be derived from surveys or open data, and can be modified to incorporate variables identified by behavioral theories. This advancement will offer the public and decision-makers greater insight into disease transmission, accurate predictions on disease outcomes, and preparation for future infectious disease outbreaks.

Cite as

Emma Von Hoene, Amira Roess, and Taylor Anderson. A Data-Driven Decision-Making Framework for Spatial Agent-Based Models of Infectious Disease Spread (Short Paper). In 12th International Conference on Geographic Information Science (GIScience 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 277, pp. 76:1-76:7, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{vonhoene_et_al:LIPIcs.GIScience.2023.76,
  author =	{Von Hoene, Emma and Roess, Amira and Anderson, Taylor},
  title =	{{A Data-Driven Decision-Making Framework for Spatial Agent-Based Models of Infectious Disease Spread}},
  booktitle =	{12th International Conference on Geographic Information Science (GIScience 2023)},
  pages =	{76:1--76:7},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-288-4},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{277},
  editor =	{Beecham, Roger and Long, Jed A. and Smith, Dianna and Zhao, Qunshan and Wise, Sarah},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GIScience.2023.76},
  URN =		{urn:nbn:de:0030-drops-189712},
  doi =		{10.4230/LIPIcs.GIScience.2023.76},
  annote =	{Keywords: Agent-based model, geographic information science, disease simulation, COVID-19, agent behavior, mask use}
}
Document
Mobility Data Science (Dagstuhl Seminar 22021)

Authors: Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi

Published in: Dagstuhl Reports, Volume 12, Issue 1 (2022)


Abstract
This report documents the program and the outcomes of Dagstuhl Seminar 22021 "Mobility Data Science". This seminar was held January 9-14, 2022, including 47 participants from industry and academia. The goal of this Dagstuhl Seminar was to create a new research community of mobility data science in which the whole is greater than the sum of its parts by bringing together established leaders as well as promising young researchers from all fields related to mobility data science. Specifically, this report summarizes the main results of the seminar by (1) defining Mobility Data Science as a research domain, (2) by sketching its agenda in the coming years, and by (3) building a mobility data science community. (1) Mobility data science is defined as spatiotemporal data that additionally captures the behavior of moving entities (human, vehicle, animal, etc.). To understand, explain, and predict behavior, we note that a strong collaboration with research in behavioral and social sciences is needed. (2) Future research directions for mobility data science described in this report include a) mobility data acquisition and privacy, b) mobility data management and analysis, and c) applications of mobility data science. (3) We identify opportunities towards building a mobility data science community, towards collaborations between academic and industry, and towards a mobility data science curriculum.

Cite as

Mohamed Mokbel, Mahmoud Sakr, Li Xiong, Andreas Züfle, Jussara Almeida, Taylor Anderson, Walid Aref, Gennady Andrienko, Natalia Andrienko, Yang Cao, Sanjay Chawla, Reynold Cheng, Panos Chrysanthis, Xiqi Fei, Gabriel Ghinita, Anita Graser, Dimitrios Gunopulos, Christian Jensen, Joon-Sook Kim, Kyoung-Sook Kim, Peer Kröger, John Krumm, Johannes Lauer, Amr Magdy, Mario Nascimento, Siva Ravada, Matthias Renz, Dimitris Sacharidis, Cyrus Shahabi, Flora Salim, Mohamed Sarwat, Maxime Schoemans, Bettina Speckmann, Egemen Tanin, Yannis Theodoridis, Kristian Torp, Goce Trajcevski, Marc van Kreveld, Carola Wenk, Martin Werner, Raymond Wong, Song Wu, Jianqiu Xu, Moustafa Youssef, Demetris Zeinalipour, Mengxuan Zhang, and Esteban Zimányi. Mobility Data Science (Dagstuhl Seminar 22021). In Dagstuhl Reports, Volume 12, Issue 1, pp. 1-34, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@Article{mokbel_et_al:DagRep.12.1.1,
  author =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas and Almeida, Jussara and Anderson, Taylor and Aref, Walid and Andrienko, Gennady and Andrienko, Natalia and Cao, Yang and Chawla, Sanjay and Cheng, Reynold and Chrysanthis, Panos and Fei, Xiqi and Ghinita, Gabriel and Graser, Anita and Gunopulos, Dimitrios and Jensen, Christian and Kim, Joon-Sook and Kim, Kyoung-Sook and Kr\"{o}ger, Peer and Krumm, John and Lauer, Johannes and Magdy, Amr and Nascimento, Mario and Ravada, Siva and Renz, Matthias and Sacharidis, Dimitris and Shahabi, Cyrus and Salim, Flora and Sarwat, Mohamed and Schoemans, Maxime and Speckmann, Bettina and Tanin, Egemen and Theodoridis, Yannis and Torp, Kristian and Trajcevski, Goce and van Kreveld, Marc and Wenk, Carola and Werner, Martin and Wong, Raymond and Wu, Song and Xu, Jianqiu and Youssef, Moustafa and Zeinalipour, Demetris and Zhang, Mengxuan and Zim\'{a}nyi, Esteban},
  title =	{{Mobility Data Science (Dagstuhl Seminar 22021)}},
  pages =	{1--34},
  journal =	{Dagstuhl Reports},
  ISSN =	{2192-5283},
  year =	{2022},
  volume =	{12},
  number =	{1},
  editor =	{Mokbel, Mohamed and Sakr, Mahmoud and Xiong, Li and Z\"{u}fle, Andreas},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DagRep.12.1.1},
  URN =		{urn:nbn:de:0030-drops-169190},
  doi =		{10.4230/DagRep.12.1.1},
  annote =	{Keywords: Spatio-temporal, Tracking, Privacy, Behavior, Data cleaning, Data management, Analytics}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail