Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

A RAC graph is one admitting a RAC drawing, that is, a polyline drawing in which each crossing occurs at a right angle. Originally motivated by psychological studies on readability of graph layouts, RAC graphs form one of the most prominent graph classes in beyond planarity.
In this work, we study a subclass of RAC graphs, called axis-parallel RAC (or apRAC, for short), that restricts the crossings to pairs of axis-parallel edge-segments. apRAC drawings combine the readability of planar drawings with the clarity of (non-planar) orthogonal drawings. We consider these graphs both with and without bends. Our contribution is as follows: (i) We study inclusion relationships between apRAC and traditional RAC graphs. (ii) We establish bounds on the edge density of apRAC graphs. (iii) We show that every graph with maximum degree 8 is 2-bend apRAC and give a linear time drawing algorithm. Some of our results on apRAC graphs also improve the state of the art for general RAC graphs. We conclude our work with a list of open questions and a discussion of a natural generalization of the apRAC model.

Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, Maximilian Pfister, and Torsten Ueckerdt. Axis-Parallel Right Angle Crossing Graphs. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 9:1-9:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.ESA.2023.9, author = {Angelini, Patrizio and Bekos, Michael A. and Katheder, Julia and Kaufmann, Michael and Pfister, Maximilian and Ueckerdt, Torsten}, title = {{Axis-Parallel Right Angle Crossing Graphs}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {9:1--9:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.9}, URN = {urn:nbn:de:0030-drops-186623}, doi = {10.4230/LIPIcs.ESA.2023.9}, annote = {Keywords: Graph drawing, RAC graphs, Graph drawing algorithms} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

In an upward-planar L-drawing of a directed acyclic graph (DAG) each edge e is represented as a polyline composed of a vertical segment with its lowest endpoint at the tail of e and of a horizontal segment ending at the head of e. Distinct edges may overlap, but not cross. Recently, upward-planar L-drawings have been studied for st-graphs, i.e., planar DAGs with a single source s and a single sink t containing an edge directed from s to t. It is known that a plane st-graph, i.e., an embedded st-graph in which the edge (s,t) is incident to the outer face, admits an upward-planar L-drawing if and only if it admits a bitonic st-ordering, which can be tested in linear time.
We study upward-planar L-drawings of DAGs that are not necessarily st-graphs. On the combinatorial side, we show that a plane DAG admits an upward-planar L-drawing if and only if it is a subgraph of a plane st-graph admitting a bitonic st-ordering. This allows us to show that not every tree with a fixed bimodal embedding admits an upward-planar L-drawing. Moreover, we prove that any acyclic cactus with a single source (or a single sink) admits an upward-planar L-drawing, which respects a given outerplanar embedding if there are no transitive edges. On the algorithmic side, we consider DAGs with a single source (or a single sink). We give linear-time testing algorithms for these DAGs in two cases: (i) when the drawing must respect a prescribed embedding and (ii) when no restriction is given on the embedding, but the DAG is biconnected and series-parallel.

Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, and Giordano Da Lozzo. On Upward-Planar L-Drawings of Graphs. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 10:1-10:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.MFCS.2022.10, author = {Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano}, title = {{On Upward-Planar L-Drawings of Graphs}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {10:1--10:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.10}, URN = {urn:nbn:de:0030-drops-168085}, doi = {10.4230/LIPIcs.MFCS.2022.10}, annote = {Keywords: graph drawing, planar L-drawings, directed graphs, bitonic st-ordering, upward planarity, series-parallel graphs} }

Document

**Published in:** LIPIcs, Volume 241, 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)

Motivated by cognitive experiments providing evidence that large crossing-angles do not impair the readability of a graph drawing, RAC (Right Angle Crossing) drawings were introduced to address the problem of producing readable representations of non-planar graphs by supporting the optimal case in which all crossings form 90° angles.
In this work, we make progress on the problem of finding RAC drawings of graphs of low degree. In this context, a long-standing open question asks whether all degree-3 graphs admit straight-line RAC drawings. This question has been positively answered for the Hamiltonian degree-3 graphs. We improve on this result by extending to the class of 3-edge-colorable degree-3 graphs. When each edge is allowed to have one bend, we prove that degree-4 graphs admit such RAC drawings, a result which was previously known only for degree-3 graphs. Finally, we show that 7-edge-colorable degree-7 graphs admit RAC drawings with two bends per edge. This improves over the previous result on degree-6 graphs.

Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian Pfister. RAC Drawings of Graphs with Low Degree. In 47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 241, pp. 11:1-11:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.MFCS.2022.11, author = {Angelini, Patrizio and Bekos, Michael A. and Katheder, Julia and Kaufmann, Michael and Pfister, Maximilian}, title = {{RAC Drawings of Graphs with Low Degree}}, booktitle = {47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022)}, pages = {11:1--11:15}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-256-3}, ISSN = {1868-8969}, year = {2022}, volume = {241}, editor = {Szeider, Stefan and Ganian, Robert and Silva, Alexandra}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2022.11}, URN = {urn:nbn:de:0030-drops-168090}, doi = {10.4230/LIPIcs.MFCS.2022.11}, annote = {Keywords: Graph Drawing, RAC graphs, Straight-line and bent drawings} }

Document

**Published in:** LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)

A map graph is one admitting a representation in which vertices are nations on a spherical map and edges are shared curve segments or points between nations. We present an explicit fixed-parameter tractable algorithm for recognizing map graphs parameterized by treewidth. The algorithm has time complexity that is linear in the size of the graph and, if the input is a yes-instance, it reports a certificate in the form of a so-called witness. Furthermore, this result is developed within a more general algorithmic framework that allows to test, for any k, if the input graph admits a k-map (where at most k nations meet at a common point) or a hole-free k-map (where each point is covered by at least one nation). We point out that, although bounding the treewidth of the input graph also bounds the size of its largest clique, the latter alone does not seem to be a strong enough structural limitation to obtain an efficient time complexity. In fact, while the largest clique in a k-map graph is ⌊ 3k/2 ⌋, the recognition of k-map graphs is still open for any fixed k ≥ 5.

Patrizio Angelini, Michael A. Bekos, Giordano Da Lozzo, Martin Gronemann, Fabrizio Montecchiani, and Alessandra Tappini. Recognizing Map Graphs of Bounded Treewidth. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SWAT.2022.8, author = {Angelini, Patrizio and Bekos, Michael A. and Da Lozzo, Giordano and Gronemann, Martin and Montecchiani, Fabrizio and Tappini, Alessandra}, title = {{Recognizing Map Graphs of Bounded Treewidth}}, booktitle = {18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)}, pages = {8:1--8:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-236-5}, ISSN = {1868-8969}, year = {2022}, volume = {227}, editor = {Czumaj, Artur and Xin, Qin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.8}, URN = {urn:nbn:de:0030-drops-161681}, doi = {10.4230/LIPIcs.SWAT.2022.8}, annote = {Keywords: Map graphs, Recognition, Parameterized complexity} }

Document

**Published in:** LIPIcs, Volume 129, 35th International Symposium on Computational Geometry (SoCG 2019)

We consider the problem of morphing between contact representations of a plane graph. In a contact representation of a plane graph, vertices are realized by internally disjoint elements from a family of connected geometric objects. Two such elements touch if and only if their corresponding vertices are adjacent. These touchings also induce the same embedding as in the graph. In a morph between two contact representations we insist that at each time step (continuously throughout the morph) we have a contact representation of the same type.
We focus on the case when the geometric objects are triangles that are the lower-right half of axis-parallel rectangles. Such RT-representations exist for every plane graph and right triangles are one of the simplest families of shapes supporting this property. Thus, they provide a natural case to study regarding morphs of contact representations of plane graphs.
We study piecewise linear morphs, where each step is a linear morph moving the endpoints of each triangle at constant speed along straight-line trajectories. We provide a polynomial-time algorithm that decides whether there is a piecewise linear morph between two RT-representations of a plane triangulation, and, if so, computes a morph with a quadratic number of linear morphs. As a direct consequence, we obtain that for 4-connected plane triangulations there is a morph between every pair of RT-representations where the "top-most" triangle in both representations corresponds to the same vertex. This shows that the realization space of such RT-representations of any 4-connected plane triangulation forms a connected set.

Patrizio Angelini, Steven Chaplick, Sabine Cornelsen, Giordano Da Lozzo, and Vincenzo Roselli. Morphing Contact Representations of Graphs. In 35th International Symposium on Computational Geometry (SoCG 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 129, pp. 10:1-10:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SoCG.2019.10, author = {Angelini, Patrizio and Chaplick, Steven and Cornelsen, Sabine and Da Lozzo, Giordano and Roselli, Vincenzo}, title = {{Morphing Contact Representations of Graphs}}, booktitle = {35th International Symposium on Computational Geometry (SoCG 2019)}, pages = {10:1--10:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-104-7}, ISSN = {1868-8969}, year = {2019}, volume = {129}, editor = {Barequet, Gill and Wang, Yusu}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2019.10}, URN = {urn:nbn:de:0030-drops-104145}, doi = {10.4230/LIPIcs.SoCG.2019.10}, annote = {Keywords: Contact representations, Triangulations, Planar morphs, Schnyder woods} }

Document

**Published in:** LIPIcs, Volume 123, 29th International Symposium on Algorithms and Computation (ISAAC 2018)

Beyond-planarity focuses on the study of geometric and topological graphs that are in some sense nearly planar. Here, planarity is relaxed by allowing edge crossings, but only with respect to some local forbidden crossing configurations. Early research dates back to the 1960s (e.g., Avital and Hanani 1966) for extremal problems on geometric graphs, but is also related to graph drawing problems where visual clutter due to edge crossings should be minimized (e.g., Huang et al. 2018).
Most of the literature focuses on Turán-type problems, which ask for the maximum number of edges a beyond-planar graph can have. Here, we study this problem for bipartite topological graphs, considering several types of beyond-planar graphs, i.e. 1-planar, 2-planar, fan-planar, and RAC graphs. We prove bounds on the number of edges that are tight up to additive constants; some of them are surprising and not along the lines of the known results for non-bipartite graphs. Our findings lead to an improvement of the leading constant of the well-known Crossing Lemma for bipartite graphs, as well as to a number of interesting questions on topological graphs.

Patrizio Angelini, Michael A. Bekos, Michael Kaufmann, Maximilian Pfister, and Torsten Ueckerdt. Beyond-Planarity: Turán-Type Results for Non-Planar Bipartite Graphs. In 29th International Symposium on Algorithms and Computation (ISAAC 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 123, pp. 28:1-28:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.ISAAC.2018.28, author = {Angelini, Patrizio and Bekos, Michael A. and Kaufmann, Michael and Pfister, Maximilian and Ueckerdt, Torsten}, title = {{Beyond-Planarity: Tur\'{a}n-Type Results for Non-Planar Bipartite Graphs}}, booktitle = {29th International Symposium on Algorithms and Computation (ISAAC 2018)}, pages = {28:1--28:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-094-1}, ISSN = {1868-8969}, year = {2018}, volume = {123}, editor = {Hsu, Wen-Lian and Lee, Der-Tsai and Liao, Chung-Shou}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2018.28}, URN = {urn:nbn:de:0030-drops-99763}, doi = {10.4230/LIPIcs.ISAAC.2018.28}, annote = {Keywords: Bipartite topological graphs, beyond planarity, density, Crossing Lemma} }

Document

**Published in:** LIPIcs, Volume 103, 17th International Symposium on Experimental Algorithms (SEA 2018)

In the classical Steiner tree problem, one is given an undirected, connected graph G=(V,E) with non-negative edge costs and a set of terminals T subseteq V. The objective is to find a minimum-cost edge set E' subseteq E that spans the terminals. The problem is APX-hard; the best known approximation algorithm has a ratio of rho = ln(4)+epsilon < 1.39. In this paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence of terminals T_1 subset ... subset T_k subseteq V, compute nested edge sets E_1 subseteq ... subseteq E_k subseteq E that span the corresponding terminal sets with minimum total cost.
The MLST problem and variants thereof have been studied under names such as Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several approximation results are known. We first present two natural heuristics with approximation factor O(k). Based on these, we introduce a composite algorithm that requires 2^k Steiner tree computations. We determine its approximation ratio by solving a linear program. We then present a method that guarantees the same approximation ratio and needs at most 2k Steiner tree computations. We compare five algorithms experimentally on several classes of graphs using four types of graph generators. We also implemented an integer linear program for MLST to provide ground truth. Our combined algorithm outperforms the others both in theory and in practice when the number of levels is small (k <= 22), which works well for applications such as designing multi-level infrastructure or network visualization.

Reyan Ahmed, Patrizio Angelini, Faryad Darabi Sahneh, Alon Efrat, David Glickenstein, Martin Gronemann, Niklas Heinsohn, Stephen G. Kobourov, Richard Spence, Joseph Watkins, and Alexander Wolff. Multi-Level Steiner Trees. In 17th International Symposium on Experimental Algorithms (SEA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 103, pp. 15:1-15:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)

Copy BibTex To Clipboard

@InProceedings{ahmed_et_al:LIPIcs.SEA.2018.15, author = {Ahmed, Reyan and Angelini, Patrizio and Sahneh, Faryad Darabi and Efrat, Alon and Glickenstein, David and Gronemann, Martin and Heinsohn, Niklas and Kobourov, Stephen G. and Spence, Richard and Watkins, Joseph and Wolff, Alexander}, title = {{Multi-Level Steiner Trees}}, booktitle = {17th International Symposium on Experimental Algorithms (SEA 2018)}, pages = {15:1--15:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-070-5}, ISSN = {1868-8969}, year = {2018}, volume = {103}, editor = {D'Angelo, Gianlorenzo}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2018.15}, URN = {urn:nbn:de:0030-drops-89506}, doi = {10.4230/LIPIcs.SEA.2018.15}, annote = {Keywords: Approximation algorithm, Steiner tree, multi-level graph representation} }

Document

**Published in:** LIPIcs, Volume 77, 33rd International Symposium on Computational Geometry (SoCG 2017)

We describe a set of Delta-1 slopes that are universal for 1-bend planar drawings of planar graphs of maximum degree Delta>=4; this establishes a new upper bound of Delta-1 on the 1-bend planar slope number. By universal we mean that every planar graph of degree Delta has a planar drawing with at most one bend per edge and such that the slopes of the segments forming the edges belong to the given set of slopes. This improves over previous results in two ways: Firstly, the best previously known upper bound for the 1-bend planar slope number was 3/2(Delta-1) (the known lower bound being 3/4(Delta-1)); secondly, all the known algorithms to construct 1-bend planar drawings with O(Delta) slopes use a different set of slopes for each graph and can have bad angular resolution, while our algorithm uses a universal set of slopes, which also guarantees that the minimum angle between any two edges incident to a vertex is pi/(Delta-1).

Patrizio Angelini, Michael A. Bekos, Giuseppe Liotta, and Fabrizio Montecchiani. A Universal Slope Set for 1-Bend Planar Drawings. In 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 77, pp. 9:1-9:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SoCG.2017.9, author = {Angelini, Patrizio and Bekos, Michael A. and Liotta, Giuseppe and Montecchiani, Fabrizio}, title = {{A Universal Slope Set for 1-Bend Planar Drawings}}, booktitle = {33rd International Symposium on Computational Geometry (SoCG 2017)}, pages = {9:1--9:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-038-5}, ISSN = {1868-8969}, year = {2017}, volume = {77}, editor = {Aronov, Boris and Katz, Matthew J.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2017.9}, URN = {urn:nbn:de:0030-drops-71917}, doi = {10.4230/LIPIcs.SoCG.2017.9}, annote = {Keywords: Slope number, 1-bend drawings, planar graphs, angular resolution} }

Document

**Published in:** LIPIcs, Volume 64, 27th International Symposium on Algorithms and Computation (ISAAC 2016)

We study the version of the C-Planarity problem in which edges connecting the same pair of clusters must be grouped into pipes, which generalizes the Strip Planarity problem. We give algorithms to decide several families of instances for the two variants in which the order of the pipes around each cluster is given as part of the input or can be chosen by the algorithm.

Patrizio Angelini and Giordano Da Lozzo. Clustered Planarity with Pipes. In 27th International Symposium on Algorithms and Computation (ISAAC 2016). Leibniz International Proceedings in Informatics (LIPIcs), Volume 64, pp. 13:1-13:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2016)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.ISAAC.2016.13, author = {Angelini, Patrizio and Da Lozzo, Giordano}, title = {{Clustered Planarity with Pipes}}, booktitle = {27th International Symposium on Algorithms and Computation (ISAAC 2016)}, pages = {13:1--13:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-026-2}, ISSN = {1868-8969}, year = {2016}, volume = {64}, editor = {Hong, Seok-Hee}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2016.13}, URN = {urn:nbn:de:0030-drops-67817}, doi = {10.4230/LIPIcs.ISAAC.2016.13}, annote = {Keywords: Clustered Planarity, FPT, SEFE, Graph Drawing} }

Document

**Published in:** LIPIcs, Volume 34, 31st International Symposium on Computational Geometry (SoCG 2015)

We give an algorithm to compute a morph between any two convex drawings of the same plane graph. The morph preserves the convexity of the drawing at any time instant and moves each vertex along a piecewise linear curve with linear complexity. The linear bound is asymptotically optimal in the worst case.

Patrizio Angelini, Giordano Da Lozzo, Fabrizio Frati, Anna Lubiw, Maurizio Patrignani, and Vincenzo Roselli. Optimal Morphs of Convex Drawings. In 31st International Symposium on Computational Geometry (SoCG 2015). Leibniz International Proceedings in Informatics (LIPIcs), Volume 34, pp. 126-140, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2015)

Copy BibTex To Clipboard

@InProceedings{angelini_et_al:LIPIcs.SOCG.2015.126, author = {Angelini, Patrizio and Da Lozzo, Giordano and Frati, Fabrizio and Lubiw, Anna and Patrignani, Maurizio and Roselli, Vincenzo}, title = {{Optimal Morphs of Convex Drawings}}, booktitle = {31st International Symposium on Computational Geometry (SoCG 2015)}, pages = {126--140}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-939897-83-5}, ISSN = {1868-8969}, year = {2015}, volume = {34}, editor = {Arge, Lars and Pach, J\'{a}nos}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SOCG.2015.126}, URN = {urn:nbn:de:0030-drops-51333}, doi = {10.4230/LIPIcs.SOCG.2015.126}, annote = {Keywords: Convex Drawings, Planar Graphs, Morphing, Geometric Representations} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail