Document

**Published in:** LIPIcs, Volume 310, 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)

This study examines clusterability testing for a signed graph in the bounded-degree model. Our contributions are two-fold. First, we provide a quantum algorithm with query complexity Õ(N^{1/3}) for testing clusterability, which yields a polynomial speedup over the best classical clusterability tester known [Adriaens and Apers, 2023]. Second, we prove an Ω̃(√N) classical query lower bound for testing clusterability, which nearly matches the upper bound from [Adriaens and Apers, 2023]. This settles the classical query complexity of clusterability testing, and it shows that our quantum algorithm has an advantage over any classical algorithm.

Kuo-Chin Chen, Simon Apers, and Min-Hsiu Hsieh. (Quantum) Complexity of Testing Signed Graph Clusterability. In 19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 310, pp. 8:1-8:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{chen_et_al:LIPIcs.TQC.2024.8, author = {Chen, Kuo-Chin and Apers, Simon and Hsieh, Min-Hsiu}, title = {{(Quantum) Complexity of Testing Signed Graph Clusterability}}, booktitle = {19th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2024)}, pages = {8:1--8:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-328-7}, ISSN = {1868-8969}, year = {2024}, volume = {310}, editor = {Magniez, Fr\'{e}d\'{e}ric and Grilo, Alex Bredariol}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2024.8}, URN = {urn:nbn:de:0030-drops-206786}, doi = {10.4230/LIPIcs.TQC.2024.8}, annote = {Keywords: Quantum Algorithm, classical Query lower Bound, Graph Property testing} }

Document

**Published in:** LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)

Undirected st-connectivity is important both for its applications in network problems, and for its theoretical connections with logspace complexity. Classically, a long line of work led to a time-space tradeoff of T = Õ(n²/S) for any S such that S = Ω(log(n)) and S = O(n²/m). Surprisingly, we show that quantumly there is no nontrivial time-space tradeoff: there is a quantum algorithm that achieves both optimal time Õ(n) and space O(log(n)) simultaneously. This improves on previous results, which required either O(log(n)) space and Õ(n^{1.5}) time, or Õ(n) space and time. To complement this, we show that there is a nontrivial time-space tradeoff when given a lower bound on the spectral gap of a corresponding random walk.

Simon Apers, Stacey Jeffery, Galina Pass, and Michael Walter. (No) Quantum Space-Time Tradeoff for USTCON. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.ESA.2023.10, author = {Apers, Simon and Jeffery, Stacey and Pass, Galina and Walter, Michael}, title = {{(No) Quantum Space-Time Tradeoff for USTCON}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {10:1--10:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.10}, URN = {urn:nbn:de:0030-drops-186636}, doi = {10.4230/LIPIcs.ESA.2023.10}, annote = {Keywords: Undirected st-connectivity, quantum walks, time-space tradeoff} }

Document

APPROX

**Published in:** LIPIcs, Volume 245, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)

In a breakthrough work, Kawarabayashi and Thorup (J. ACM'19) gave a near-linear time deterministic algorithm to compute the weight of a minimum cut in a simple graph G = (V,E). A key component of this algorithm is finding the (1+ε)-KT partition of G, the coarsest partition {P_1, …, P_k} of V such that for every non-trivial (1+ε)-near minimum cut with sides {S, ̄{S}} it holds that P_i is contained in either S or ̄{S}, for i = 1, …, k. In this work we give a near-linear time randomized algorithm to find the (1+ε)-KT partition of a weighted graph. Our algorithm is quite different from that of Kawarabayashi and Thorup and builds on Karger’s framework of tree-respecting cuts (J. ACM'00).
We describe a number of applications of the algorithm. (i) The algorithm makes progress towards a more efficient algorithm for constructing the polygon representation of the set of near-minimum cuts in a graph. This is a generalization of the cactus representation, and was initially described by Benczúr (FOCS'95). (ii) We improve the time complexity of a recent quantum algorithm for minimum cut in a simple graph in the adjacency list model from Õ(n^{3/2}) to Õ(√{mn}), when the graph has n vertices and m edges. (iii) We describe a new type of randomized algorithm for minimum cut in simple graphs with complexity 𝒪(m + n log⁶ n). For graphs that are not too sparse, this matches the complexity of the current best 𝒪(m + n log² n) algorithm which uses a different approach based on random contractions.
The key technical contribution of our work is the following. Given a weighted graph G with m edges and a spanning tree T of G, consider the graph H whose nodes are the edges of T, and where there is an edge between two nodes of H iff the corresponding 2-respecting cut of T is a non-trivial near-minimum cut of G. We give a 𝒪(m log⁴ n) time deterministic algorithm to compute a spanning forest of H.

Simon Apers, Paweł Gawrychowski, and Troy Lee. Finding the KT Partition of a Weighted Graph in Near-Linear Time. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 245, pp. 32:1-32:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.APPROX/RANDOM.2022.32, author = {Apers, Simon and Gawrychowski, Pawe{\l} and Lee, Troy}, title = {{Finding the KT Partition of a Weighted Graph in Near-Linear Time}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022)}, pages = {32:1--32:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-249-5}, ISSN = {1868-8969}, year = {2022}, volume = {245}, editor = {Chakrabarti, Amit and Swamy, Chaitanya}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2022.32}, URN = {urn:nbn:de:0030-drops-171544}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2022.32}, annote = {Keywords: Graph theory} }

Document

**Published in:** LIPIcs, Volume 200, 36th Computational Complexity Conference (CCC 2021)

The minimum cut problem in an undirected and weighted graph G is to find the minimum total weight of a set of edges whose removal disconnects G. We completely characterize the quantum query and time complexity of the minimum cut problem in the adjacency matrix model. If G has n vertices and edge weights at least 1 and at most τ, we give a quantum algorithm to solve the minimum cut problem using Õ(n^{3/2}√{τ}) queries and time. Moreover, for every integer 1 ≤ τ ≤ n we give an example of a graph G with edge weights 1 and τ such that solving the minimum cut problem on G requires Ω(n^{3/2}√{τ}) queries to the adjacency matrix of G. These results contrast with the classical randomized case where Ω(n²) queries to the adjacency matrix are needed in the worst case even to decide if an unweighted graph is connected or not.
In the adjacency array model, when G has m edges the classical randomized complexity of the minimum cut problem is ̃ Θ(m). We show that the quantum query and time complexity are Õ(√{mnτ}) and Õ(√{mnτ} + n^{3/2}), respectively, where again the edge weights are between 1 and τ. For dense graphs we give lower bounds on the quantum query complexity of Ω(n^{3/2}) for τ > 1 and Ω(τ n) for any 1 ≤ τ ≤ n.
Our query algorithm uses a quantum algorithm for graph sparsification by Apers and de Wolf (FOCS 2020) and results on the structure of near-minimum cuts by Kawarabayashi and Thorup (STOC 2015) and Rubinstein, Schramm and Weinberg (ITCS 2018). Our time efficient implementation builds on Karger’s tree packing technique (STOC 1996).

Simon Apers and Troy Lee. Quantum Complexity of Minimum Cut. In 36th Computational Complexity Conference (CCC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 200, pp. 28:1-28:33, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.CCC.2021.28, author = {Apers, Simon and Lee, Troy}, title = {{Quantum Complexity of Minimum Cut}}, booktitle = {36th Computational Complexity Conference (CCC 2021)}, pages = {28:1--28:33}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-193-1}, ISSN = {1868-8969}, year = {2021}, volume = {200}, editor = {Kabanets, Valentine}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CCC.2021.28}, URN = {urn:nbn:de:0030-drops-143026}, doi = {10.4230/LIPIcs.CCC.2021.28}, annote = {Keywords: Quantum algorithms, quantum query complexity, minimum cut} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

Many quantum algorithms critically rely on quantum walk search, or the use of quantum walks to speed up search problems on graphs. However, the main results on quantum walk search are scattered over different, incomparable frameworks, such as the hitting time framework, the MNRS framework, and the electric network framework. As a consequence, a number of pieces are currently missing. For example, recent work by Ambainis et al. (STOC'20) shows how quantum walks starting from the stationary distribution can always find elements quadratically faster. In contrast, the electric network framework allows quantum walks to start from an arbitrary initial state, but it only detects marked elements.
We present a new quantum walk search framework that unifies and strengthens these frameworks, leading to a number of new results. For example, the new framework effectively finds marked elements in the electric network setting. The new framework also allows to interpolate between the hitting time framework, minimizing the number of walk steps, and the MNRS framework, minimizing the number of times elements are checked for being marked. This allows for a more natural tradeoff between resources. In addition to quantum walks and phase estimation, our new algorithm makes use of quantum fast-forwarding, similar to the recent results by Ambainis et al. This perspective also enables us to derive more general complexity bounds on the quantum walk algorithms, e.g., based on Monte Carlo type bounds of the corresponding classical walk. As a final result, we show how in certain cases we can avoid the use of phase estimation and quantum fast-forwarding, answering an open question of Ambainis et al.

Simon Apers, András Gilyén, and Stacey Jeffery. A Unified Framework of Quantum Walk Search. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 6:1-6:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{apers_et_al:LIPIcs.STACS.2021.6, author = {Apers, Simon and Gily\'{e}n, Andr\'{a}s and Jeffery, Stacey}, title = {{A Unified Framework of Quantum Walk Search}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {6:1--6:13}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.6}, URN = {urn:nbn:de:0030-drops-136511}, doi = {10.4230/LIPIcs.STACS.2021.6}, annote = {Keywords: Quantum Algorithms, Quantum Walks, Graph Theory} }

Document

**Published in:** LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)

This work describes a new algorithm for creating a superposition over the edge set of a graph, encoding a quantum sample of the random walk stationary distribution. The algorithm requires a number of quantum walk steps scaling as O~(m^(1/3) delta^(-1/3)), with m the number of edges and delta the random walk spectral gap. This improves on existing strategies by initially growing a classical seed set in the graph, from which a quantum walk is then run.
The algorithm leads to a number of improvements: (i) it provides a new bound on the setup cost of quantum walk search algorithms, (ii) it yields a new algorithm for st-connectivity, and (iii) it allows to create a superposition over the isomorphisms of an n-node graph in time O~(2^(n/3)), surpassing the Omega(2^(n/2)) barrier set by index erasure.

Simon Apers. Quantum Walk Sampling by Growing Seed Sets. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 9:1-9:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{apers:LIPIcs.ESA.2019.9, author = {Apers, Simon}, title = {{Quantum Walk Sampling by Growing Seed Sets}}, booktitle = {27th Annual European Symposium on Algorithms (ESA 2019)}, pages = {9:1--9:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-124-5}, ISSN = {1868-8969}, year = {2019}, volume = {144}, editor = {Bender, Michael A. and Svensson, Ola and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.9}, URN = {urn:nbn:de:0030-drops-111300}, doi = {10.4230/LIPIcs.ESA.2019.9}, annote = {Keywords: Quantum algorithms, Quantum walks, Connectivity, Graph theory} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail