Search Results

Documents authored by Ardévol Martínez, Virginia


Document
Generalizing Roberts' Characterization of Unit Interval Graphs

Authors: Virginia Ardévol Martínez, Romeo Rizzi, Abdallah Saffidine, Florian Sikora, and Stéphane Vialette

Published in: LIPIcs, Volume 306, 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)


Abstract
For any natural number d, a graph G is a (disjoint) d-interval graph if it is the intersection graph of (disjoint) d-intervals, the union of d (disjoint) intervals on the real line. Two important subclasses of d-interval graphs are unit and balanced d-interval graphs (where every interval has unit length or all the intervals associated to a same vertex have the same length, respectively). A celebrated result by Roberts gives a simple characterization of unit interval graphs being exactly claw-free interval graphs. Here, we study the generalization of this characterization for d-interval graphs. In particular, we prove that for any d ⩾ 2, if G is a K_{1,2d+1}-free interval graph, then G is a unit d-interval graph. However, somehow surprisingly, under the same assumptions, G is not always a disjoint unit d-interval graph. This implies that the class of disjoint unit d-interval graphs is strictly included in the class of unit d-interval graphs. Finally, we study the relationships between the classes obtained under disjoint and non-disjoint d-intervals in the balanced case and show that the classes of disjoint balanced 2-intervals and balanced 2-intervals coincide, but this is no longer true for d > 2.

Cite as

Virginia Ardévol Martínez, Romeo Rizzi, Abdallah Saffidine, Florian Sikora, and Stéphane Vialette. Generalizing Roberts' Characterization of Unit Interval Graphs. In 49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 306, pp. 12:1-12:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{ardevolmartinez_et_al:LIPIcs.MFCS.2024.12,
  author =	{Ard\'{e}vol Mart{\'\i}nez, Virginia and Rizzi, Romeo and Saffidine, Abdallah and Sikora, Florian and Vialette, St\'{e}phane},
  title =	{{Generalizing Roberts' Characterization of Unit Interval Graphs}},
  booktitle =	{49th International Symposium on Mathematical Foundations of Computer Science (MFCS 2024)},
  pages =	{12:1--12:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-335-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{306},
  editor =	{Kr\'{a}lovi\v{c}, Rastislav and Ku\v{c}era, Anton{\'\i}n},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2024.12},
  URN =		{urn:nbn:de:0030-drops-205687},
  doi =		{10.4230/LIPIcs.MFCS.2024.12},
  annote =	{Keywords: Interval graphs, Multiple Interval Graphs, Unit Interval Graphs, Characterization}
}
Document
Recognizing Unit Multiple Intervals Is Hard

Authors: Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora, and Stéphane Vialette

Published in: LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)


Abstract
Multiple interval graphs are a well-known generalization of interval graphs introduced in the 1970s to deal with situations arising naturally in scheduling and allocation. A d-interval is the union of d intervals on the real line, and a graph is a d-interval graph if it is the intersection graph of d-intervals. In particular, it is a unit d-interval graph if it admits a d-interval representation where every interval has unit length. Whereas it has been known for a long time that recognizing 2-interval graphs and other related classes such as 2-track interval graphs is NP-complete, the complexity of recognizing unit 2-interval graphs remains open. Here, we settle this question by proving that the recognition of unit 2-interval graphs is also NP-complete. Our proof technique uses a completely different approach from the other hardness results of recognizing related classes. Furthermore, we extend the result for unit d-interval graphs for any d ⩾ 2, which does not follow directly in graph recognition problems -as an example, it took almost 20 years to close the gap between d = 2 and d > 2 for the recognition of d-track interval graphs. Our result has several implications, including that recognizing (x, …, x) d-interval graphs and depth r unit 2-interval graphs is NP-complete for every x ⩾ 11 and every r ⩾ 4.

Cite as

Virginia Ardévol Martínez, Romeo Rizzi, Florian Sikora, and Stéphane Vialette. Recognizing Unit Multiple Intervals Is Hard. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 8:1-8:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{ardevolmartinez_et_al:LIPIcs.ISAAC.2023.8,
  author =	{Ard\'{e}vol Mart{\'\i}nez, Virginia and Rizzi, Romeo and Sikora, Florian and Vialette, St\'{e}phane},
  title =	{{Recognizing Unit Multiple Intervals Is Hard}},
  booktitle =	{34th International Symposium on Algorithms and Computation (ISAAC 2023)},
  pages =	{8:1--8:18},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-289-1},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{283},
  editor =	{Iwata, Satoru and Kakimura, Naonori},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.8},
  URN =		{urn:nbn:de:0030-drops-193102},
  doi =		{10.4230/LIPIcs.ISAAC.2023.8},
  annote =	{Keywords: Interval graphs, unit multiple interval graphs, recognition, NP-hardness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail