Search Results

Documents authored by Bassirian, Roozbeh


Document
Quantum Merlin-Arthur and Proofs Without Relative Phase

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)


Abstract
We study a variant of QMA where quantum proofs have no relative phase (i.e. non-negative amplitudes, up to a global phase). If only completeness is modified, this class is equal to QMA [Grilo et al., 2014]; but if both completeness and soundness are modified, the class (named QMA+ by Jeronimo and Wu [Jeronimo and Wu, 2023]) can be much more powerful. We show that QMA+ with some constant gap is equal to NEXP, yet QMA+ with some other constant gap is equal to QMA. One interpretation is that Merlin’s ability to "deceive" originates from relative phase at least as much as from entanglement, since QMA(2) ⊆ NEXP.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. Quantum Merlin-Arthur and Proofs Without Relative Phase. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 9:1-9:19, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.ITCS.2024.9,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{Quantum Merlin-Arthur and Proofs Without Relative Phase}},
  booktitle =	{15th Innovations in Theoretical Computer Science Conference (ITCS 2024)},
  pages =	{9:1--9:19},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-309-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{287},
  editor =	{Guruswami, Venkatesan},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.9},
  URN =		{urn:nbn:de:0030-drops-195370},
  doi =		{10.4230/LIPIcs.ITCS.2024.9},
  annote =	{Keywords: quantum complexity, QMA(2), PCPs}
}
Document
On the Power of Nonstandard Quantum Oracles

Authors: Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha

Published in: LIPIcs, Volume 266, 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)


Abstract
We study how the choices made when designing an oracle affect the complexity of quantum property testing problems defined relative to this oracle. We encode a regular graph of even degree as an invertible function f, and present f in different oracle models. We first give a one-query QMA protocol to test if a graph encoded in f has a small disconnected subset. We then use representation theory to show that no classical witness can help a quantum verifier efficiently decide this problem relative to an in-place oracle. Perhaps surprisingly, a simple modification to the standard oracle prevents a quantum verifier from efficiently deciding this problem, even with access to an unbounded witness.

Cite as

Roozbeh Bassirian, Bill Fefferman, and Kunal Marwaha. On the Power of Nonstandard Quantum Oracles. In 18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 266, pp. 11:1-11:25, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bassirian_et_al:LIPIcs.TQC.2023.11,
  author =	{Bassirian, Roozbeh and Fefferman, Bill and Marwaha, Kunal},
  title =	{{On the Power of Nonstandard Quantum Oracles}},
  booktitle =	{18th Conference on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023)},
  pages =	{11:1--11:25},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-283-9},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{266},
  editor =	{Fawzi, Omar and Walter, Michael},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.TQC.2023.11},
  URN =		{urn:nbn:de:0030-drops-183215},
  doi =		{10.4230/LIPIcs.TQC.2023.11},
  annote =	{Keywords: quantum complexity, QCMA, expander graphs, representation theory}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail