Document

**Published in:** LIPIcs, Volume 287, 15th Innovations in Theoretical Computer Science Conference (ITCS 2024)

A fundamental problem in circuit complexity is to find explicit functions that require large depth to compute. When considering the natural DeMorgan basis of {OR,AND}, where negations incur no cost, the best known depth lower bounds for an explicit function in NP have the form (3-o(1))log₂ n, established by Håstad (building on others) in the early 1990s. We make progress on the problem of improving this factor of 3, in two different ways:
- We consider an "algorithmic method" approach to proving stronger depth lower bounds for non-uniform circuits in the DeMorgan basis. We show that slightly faster algorithms (than what is known) for counting the number of satisfying assignments on subcubic-size DeMorgan formulas would imply supercubic-size DeMorgan formula lower bounds, implying that the depth must be at least (3+ε)log₂ n for some ε > 0. For example, if #SAT on formulas of size n^{2+2ε} can be solved in 2^{n - n^{1-ε}log^k n} time for some ε > 0 and a sufficiently large constant k, then there is a function computable in 2^{O(n)} time with a SAT oracle which does not have n^{3+ε}-size formulas. In fact, the #SAT algorithm only has to work on formulas that are a conjunction of n^{1-ε} subformulas, each of which is n^{1+3ε} size, in order to obtain the supercubic lower bound. As a proof of concept, we show that our new algorithms-to-lower-bounds connection can be applied to prove new lower bounds for "hybrid" DeMorgan formula models which compute interesting functions at their leaves.
- Turning to the {NAND} basis, we establish a greater-than-(3 log₂ n) depth lower bound against uniform circuits solving the SAT problem, using an extension of the "indirect diagonalization" method for NAND formulas. Note that circuits over the NAND basis are a special case of circuits over the DeMorgan basis; however, hard functions such as Andreev’s function (known to require depth (3-o(1))log₂ n in the DeMorgan basis) can still be computed with NAND circuits of depth (3+o(1))log₂ n. Our results imply that SAT requires polylogtime-uniform NAND circuits of depth at least 3.603 log₂ n.

Gabriel Bathie and R. Ryan Williams. Towards Stronger Depth Lower Bounds. In 15th Innovations in Theoretical Computer Science Conference (ITCS 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 287, pp. 10:1-10:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)

Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ITCS.2024.10, author = {Bathie, Gabriel and Williams, R. Ryan}, title = {{Towards Stronger Depth Lower Bounds}}, booktitle = {15th Innovations in Theoretical Computer Science Conference (ITCS 2024)}, pages = {10:1--10:24}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-309-6}, ISSN = {1868-8969}, year = {2024}, volume = {287}, editor = {Guruswami, Venkatesan}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ITCS.2024.10}, URN = {urn:nbn:de:0030-drops-195388}, doi = {10.4230/LIPIcs.ITCS.2024.10}, annote = {Keywords: DeMorgan formulas, depth complexity, circuit complexity, lower bounds, #SAT, NAND gates, SAT} }

Document

**Published in:** LIPIcs, Volume 283, 34th International Symposium on Algorithms and Computation (ISAAC 2023)

We study the online variant of the language distance problem for two classical formal languages, the language of palindromes and the language of squares, and for the two most fundamental distances, the Hamming distance and the edit (Levenshtein) distance. In this problem, defined for a fixed formal language L, we are given a string T of length n, and the task is to compute the minimal distance to L from every prefix of T. We focus on the low-distance regime, where one must compute only the distances smaller than a given threshold k. In this work, our contribution is twofold:
1) First, we show streaming algorithms, which access the input string T only through a single left-to-right scan. Both for palindromes and squares, our algorithms use O(k polylog n) space and time per character in the Hamming-distance case and O(k² polylog n) space and time per character in the edit-distance case. These algorithms are randomised by necessity, and they err with probability inverse-polynomial in n.
2) Second, we show deterministic read-only online algorithms, which are also provided with read-only random access to the already processed characters of T. Both for palindromes and squares, our algorithms use O(k polylog n) space and time per character in the Hamming-distance case and O(k⁴ polylog n) space and amortised time per character in the edit-distance case.

Gabriel Bathie, Tomasz Kociumaka, and Tatiana Starikovskaya. Small-Space Algorithms for the Online Language Distance Problem for Palindromes and Squares. In 34th International Symposium on Algorithms and Computation (ISAAC 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 283, pp. 10:1-10:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ISAAC.2023.10, author = {Bathie, Gabriel and Kociumaka, Tomasz and Starikovskaya, Tatiana}, title = {{Small-Space Algorithms for the Online Language Distance Problem for Palindromes and Squares}}, booktitle = {34th International Symposium on Algorithms and Computation (ISAAC 2023)}, pages = {10:1--10:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-289-1}, ISSN = {1868-8969}, year = {2023}, volume = {283}, editor = {Iwata, Satoru and Kakimura, Naonori}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ISAAC.2023.10}, URN = {urn:nbn:de:0030-drops-193124}, doi = {10.4230/LIPIcs.ISAAC.2023.10}, annote = {Keywords: Approximate pattern matching, streaming algorithms, palindromes, squares} }

Document

PACE Solver Description

**Published in:** LIPIcs, Volume 249, 17th International Symposium on Parameterized and Exact Computation (IPEC 2022)

We describe DreyFVS, a heuristic for Directed Feedback Vertex Set submitted to the 2022 edition of Parameterized Algorithms and Computational Experiments Challenge. The Directed Feedback Vertex Set problem asks to remove a minimal number of vertices from a digraph such that the resulting digraph is acyclic. Our algorithm first performs a guess on a reduced instance by leveraging the Sinkhorn-Knopp algorithm, to then improve this solution by pipelining two local search methods.

Gabriel Bathie, Gaétan Berthe, Yoann Coudert-Osmont, David Desobry, Amadeus Reinald, and Mathis Rocton. PACE Solver Description: DreyFVS. In 17th International Symposium on Parameterized and Exact Computation (IPEC 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 249, pp. 31:1-31:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)

Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.IPEC.2022.31, author = {Bathie, Gabriel and Berthe, Ga\'{e}tan and Coudert-Osmont, Yoann and Desobry, David and Reinald, Amadeus and Rocton, Mathis}, title = {{PACE Solver Description: DreyFVS}}, booktitle = {17th International Symposium on Parameterized and Exact Computation (IPEC 2022)}, pages = {31:1--31:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-260-0}, ISSN = {1868-8969}, year = {2022}, volume = {249}, editor = {Dell, Holger and Nederlof, Jesper}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2022.31}, URN = {urn:nbn:de:0030-drops-173870}, doi = {10.4230/LIPIcs.IPEC.2022.31}, annote = {Keywords: Directed Feedback Vertex Set, Heuristic, Sinkhorn algorithm, Local search} }

Document

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

In a (parameterized) graph edge modification problem, we are given a graph G, an integer k and a (usually well-structured) class of graphs 𝒢, and ask whether it is possible to transform G into a graph G' ∈ 𝒢 by adding and/or removing at most k edges. Parameterized graph edge modification problems received considerable attention in the last decades.
In this paper, we focus on finding small kernels for edge modification problems. One of the most studied problems is the Cluster Editing problem, in which the goal is to partition the vertex set into a disjoint union of cliques. Even if this problem admits a 2k kernel [Cao and Chen, 2012], this kernel does not reduce the size of most instances. Therefore, we explore the question of whether linear kernels are a theoretical limit in edge modification problems, in particular when the target graphs are very structured (such as a partition into cliques for instance). We prove, as far as we know, the first sublinear kernel for an edge modification problem. Namely, we show that Clique + Independent Set Deletion, which is a restriction of Cluster Deletion, admits a kernel of size O(k/log k).
We also obtain small kernels for several other edge modification problems. We prove that Split Addition (and the equivalent Split Deletion) admits a linear kernel, improving the existing quadratic kernel of Ghosh et al. [Ghosh et al., 2015]. We complement this result by proving that Trivially Perfect Addition admits a quadratic kernel (improving the cubic kernel of Guo [Guo, 2007]), and finally prove that its triangle-free version (Starforest Deletion) admits a linear kernel, which is optimal under ETH.

Gabriel Bathie, Nicolas Bousquet, and Théo Pierron. (Sub)linear Kernels for Edge Modification Problems Towards Structured Graph Classes. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 8:1-8:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.IPEC.2021.8, author = {Bathie, Gabriel and Bousquet, Nicolas and Pierron, Th\'{e}o}, title = {{(Sub)linear Kernels for Edge Modification Problems Towards Structured Graph Classes}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {8:1--8:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.8}, URN = {urn:nbn:de:0030-drops-153918}, doi = {10.4230/LIPIcs.IPEC.2021.8}, annote = {Keywords: kernelization, graph editing, split graphs, (sub)linear kernels} }

Document

PACE Solver Description

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

This document describes our exact Cluster Editing solver, PaSTEC, which got the third place in the 2021 PACE Challenge.

Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse Prieto. PACE Solver Description: PaSTEC - PAths, Stars and Twins to Edit Towards Clusters. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 29:1-29:4, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bartier_et_al:LIPIcs.IPEC.2021.29, author = {Bartier, Valentin and Bathie, Gabriel and Bousquet, Nicolas and Heinrich, Marc and Pierron, Th\'{e}o and Prieto, Ulysse}, title = {{PACE Solver Description: PaSTEC - PAths, Stars and Twins to Edit Towards Clusters}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {29:1--29:4}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.29}, URN = {urn:nbn:de:0030-drops-154129}, doi = {10.4230/LIPIcs.IPEC.2021.29}, annote = {Keywords: cluster editing, exact algorithm, star packing, twins} }

Document

PACE Solver Description

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

This document describes our heuristic Cluster Editing solver, μSolver, which got the third place in the 2021 PACE Challenge. We present the local search and kernelization techniques for Cluster Editing that are implemented in the solver.

Valentin Bartier, Gabriel Bathie, Nicolas Bousquet, Marc Heinrich, Théo Pierron, and Ulysse Prieto. PACE Solver Description: μSolver - Heuristic Track. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 33:1-33:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bartier_et_al:LIPIcs.IPEC.2021.33, author = {Bartier, Valentin and Bathie, Gabriel and Bousquet, Nicolas and Heinrich, Marc and Pierron, Th\'{e}o and Prieto, Ulysse}, title = {{PACE Solver Description: \muSolver - Heuristic Track}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {33:1--33:3}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.33}, URN = {urn:nbn:de:0030-drops-154161}, doi = {10.4230/LIPIcs.IPEC.2021.33}, annote = {Keywords: kernelization, graph editing, clustering, local search} }

Document

Track B: Automata, Logic, Semantics, and Theory of Programming

**Published in:** LIPIcs, Volume 198, 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)

In this work, we revisit the problem of testing membership in regular languages, first studied by Alon et al. [Alon et al., 2001]. We develop a one-sided error property tester for regular languages under weighted edit distance that makes 𝒪(ε^{-1} log(1/ε)) non-adaptive queries, assuming that the language is described by an automaton of constant size. Moreover, we show a matching lower bound, essentially closing the problem for the edit distance. As an application, we improve the space bound of the current best streaming property testing algorithm for visibly pushdown languages from 𝒪(ε^{-4} log⁶ n) to 𝒪(ε^{-3} log⁵ n log log n), where n is the size of the input. Finally, we provide a Ω(max(ε^{-1}, log n)) lower bound on the memory necessary to test visibly pushdown languages in the streaming model, significantly narrowing the gap between the known bounds.

Gabriel Bathie and Tatiana Starikovskaya. Property Testing of Regular Languages with Applications to Streaming Property Testing of Visibly Pushdown Languages. In 48th International Colloquium on Automata, Languages, and Programming (ICALP 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 198, pp. 119:1-119:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bathie_et_al:LIPIcs.ICALP.2021.119, author = {Bathie, Gabriel and Starikovskaya, Tatiana}, title = {{Property Testing of Regular Languages with Applications to Streaming Property Testing of Visibly Pushdown Languages}}, booktitle = {48th International Colloquium on Automata, Languages, and Programming (ICALP 2021)}, pages = {119:1--119:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-195-5}, ISSN = {1868-8969}, year = {2021}, volume = {198}, editor = {Bansal, Nikhil and Merelli, Emanuela and Worrell, James}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops-dev.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2021.119}, URN = {urn:nbn:de:0030-drops-141881}, doi = {10.4230/LIPIcs.ICALP.2021.119}, annote = {Keywords: property testing, regular languages, streaming algorithms, visibly pushdown languages} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail