Search Results

Documents authored by Bergold, Helena


Document
Holes in Convex and Simple Drawings

Authors: Helena Bergold, Joachim Orthaber, Manfred Scheucher, and Felix Schröder

Published in: LIPIcs, Volume 320, 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)


Abstract
Gons and holes in point sets have been extensively studied in the literature. For simple drawings of the complete graph a generalization of the Erdős-Szekeres theorem is known and empty triangles have been investigated. We introduce a notion of k-holes for simple drawings and study their existence with respect to the convexity hierarchy. We present a family of simple drawings without 4-holes and prove a generalization of Gerken’s empty hexagon theorem for convex drawings. A crucial intermediate step will be the structural investigation of pseudolinear subdrawings in convex drawings.

Cite as

Helena Bergold, Joachim Orthaber, Manfred Scheucher, and Felix Schröder. Holes in Convex and Simple Drawings. In 32nd International Symposium on Graph Drawing and Network Visualization (GD 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 320, pp. 5:1-5:9, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.GD.2024.5,
  author =	{Bergold, Helena and Orthaber, Joachim and Scheucher, Manfred and Schr\"{o}der, Felix},
  title =	{{Holes in Convex and Simple Drawings}},
  booktitle =	{32nd International Symposium on Graph Drawing and Network Visualization (GD 2024)},
  pages =	{5:1--5:9},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-343-0},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{320},
  editor =	{Felsner, Stefan and Klein, Karsten},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.GD.2024.5},
  URN =		{urn:nbn:de:0030-drops-212895},
  doi =		{10.4230/LIPIcs.GD.2024.5},
  annote =	{Keywords: simple topological graph, convexity hierarchy, k-gon, k-hole, empty k-cycle, Erd\H{o}s-Szekeres theorem, Empty Hexagon theorem, planar point set, pseudolinear drawing}
}
Document
Plane Hamiltonian Cycles in Convex Drawings

Authors: Helena Bergold, Stefan Felsner, Meghana M. Reddy, Joachim Orthaber, and Manfred Scheucher

Published in: LIPIcs, Volume 293, 40th International Symposium on Computational Geometry (SoCG 2024)


Abstract
A conjecture by Rafla from 1988 asserts that every simple drawing of the complete graph K_n admits a plane Hamiltonian cycle. It turned out that already the existence of much simpler non-crossing substructures in such drawings is hard to prove. Recent progress was made by Aichholzer et al. and by Suk and Zeng who proved the existence of a plane path of length Ω(log n / log log n) and of a plane matching of size Ω(n^{1/2}) in every simple drawing of K_n. Instead of studying simpler substructures, we prove Rafla’s conjecture for the subclass of convex drawings, the most general class in the convexity hierarchy introduced by Arroyo et al. Moreover, we show that every convex drawing of K_n contains a plane Hamiltonian path between each pair of vertices (Hamiltonian connectivity) and a plane k-cycle for each 3 ≤ k ≤ n (pancyclicity), and present further results on maximal plane subdrawings.

Cite as

Helena Bergold, Stefan Felsner, Meghana M. Reddy, Joachim Orthaber, and Manfred Scheucher. Plane Hamiltonian Cycles in Convex Drawings. In 40th International Symposium on Computational Geometry (SoCG 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 293, pp. 18:1-18:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.SoCG.2024.18,
  author =	{Bergold, Helena and Felsner, Stefan and M. Reddy, Meghana and Orthaber, Joachim and Scheucher, Manfred},
  title =	{{Plane Hamiltonian Cycles in Convex Drawings}},
  booktitle =	{40th International Symposium on Computational Geometry (SoCG 2024)},
  pages =	{18:1--18:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-316-4},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{293},
  editor =	{Mulzer, Wolfgang and Phillips, Jeff M.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2024.18},
  URN =		{urn:nbn:de:0030-drops-199630},
  doi =		{10.4230/LIPIcs.SoCG.2024.18},
  annote =	{Keywords: simple drawing, convexity hierarchy, plane pancyclicity, plane Hamiltonian connectivity, maximal plane subdrawing}
}
Document
An Extension Theorem for Signotopes

Authors: Helena Bergold, Stefan Felsner, and Manfred Scheucher

Published in: LIPIcs, Volume 258, 39th International Symposium on Computational Geometry (SoCG 2023)


Abstract
In 1926, Levi showed that, for every pseudoline arrangement 𝒜 and two points in the plane, 𝒜 can be extended by a pseudoline which contains the two prescribed points. Later extendability was studied for arrangements of pseudohyperplanes in higher dimensions. While the extendability of an arrangement of proper hyperplanes in ℝ^d with a hyperplane containing d prescribed points is trivial, Richter-Gebert found an arrangement of pseudoplanes in ℝ³ which cannot be extended with a pseudoplane containing two particular prescribed points. In this article, we investigate the extendability of signotopes, which are a combinatorial structure encoding a rich subclass of pseudohyperplane arrangements. Our main result is that signotopes of odd rank are extendable in the sense that for two prescribed crossing points we can add an element containing them. Moreover, we conjecture that in all even ranks r ≥ 4 there exist signotopes which are not extendable for two prescribed points. Our conjecture is supported by examples in ranks 4, 6, 8, 10, and 12 that were found with a SAT based approach.

Cite as

Helena Bergold, Stefan Felsner, and Manfred Scheucher. An Extension Theorem for Signotopes. In 39th International Symposium on Computational Geometry (SoCG 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 258, pp. 17:1-17:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.SoCG.2023.17,
  author =	{Bergold, Helena and Felsner, Stefan and Scheucher, Manfred},
  title =	{{An Extension Theorem for Signotopes}},
  booktitle =	{39th International Symposium on Computational Geometry (SoCG 2023)},
  pages =	{17:1--17:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-273-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{258},
  editor =	{Chambers, Erin W. and Gudmundsson, Joachim},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SoCG.2023.17},
  URN =		{urn:nbn:de:0030-drops-178676},
  doi =		{10.4230/LIPIcs.SoCG.2023.17},
  annote =	{Keywords: arrangement of pseudolines, extendability, Levi’s extension lemma, arrangement of pseudohyperplanes, signotope, oriented matroid, partial order, Boolean satisfiability (SAT)}
}
Document
Well-Separation and Hyperplane Transversals in High Dimensions

Authors: Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider

Published in: LIPIcs, Volume 227, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)


Abstract
A family of k point sets in d dimensions is well-separated if the convex hulls of any two disjoint subfamilies can be separated by a hyperplane. Well-separation is a strong assumption that allows us to conclude that certain kinds of generalized ham-sandwich cuts for the point sets exist. But how hard is it to check if a given family of high-dimensional point sets has this property? Starting from this question, we study several algorithmic aspects of the existence of transversals and separations in high-dimensions. First, we give an explicit proof that k point sets are well-separated if and only if their convex hulls admit no (k - 2)-transversal, i.e., if there exists no (k - 2)-dimensional flat that intersects the convex hulls of all k sets. It follows that the task of checking well-separation lies in the complexity class coNP. Next, we show that it is NP-hard to decide whether there is a hyperplane-transversal (that is, a (d - 1)-transversal) of a family of d + 1 line segments in ℝ^d, where d is part of the input. As a consequence, it follows that the general problem of testing well-separation is coNP-complete. Furthermore, we show that finding a hyperplane that maximizes the number of intersected sets is NP-hard, but allows for an Ω((log k)/(k log log k))-approximation algorithm that is polynomial in d and k, when each set consists of a single point. When all point sets are finite, we show that checking whether there exists a (k - 2)-transversal is in fact strongly NP-complete. Finally, we take the viewpoint of parametrized complexity, using the dimension d as a parameter: given k convex sets in ℝ^d, checking whether there is a (k-2)-transversal is FPT with respect to d. On the other hand, for k ≥ d+1 finite point sets in ℝ^d, it turns out that checking whether there is a (d-1)-transversal is W[1]-hard with respect to d.

Cite as

Helena Bergold, Daniel Bertschinger, Nicolas Grelier, Wolfgang Mulzer, and Patrick Schnider. Well-Separation and Hyperplane Transversals in High Dimensions. In 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 227, pp. 16:1-16:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)


Copy BibTex To Clipboard

@InProceedings{bergold_et_al:LIPIcs.SWAT.2022.16,
  author =	{Bergold, Helena and Bertschinger, Daniel and Grelier, Nicolas and Mulzer, Wolfgang and Schnider, Patrick},
  title =	{{Well-Separation and Hyperplane Transversals in High Dimensions}},
  booktitle =	{18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT 2022)},
  pages =	{16:1--16:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-236-5},
  ISSN =	{1868-8969},
  year =	{2022},
  volume =	{227},
  editor =	{Czumaj, Artur and Xin, Qin},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SWAT.2022.16},
  URN =		{urn:nbn:de:0030-drops-161766},
  doi =		{10.4230/LIPIcs.SWAT.2022.16},
  annote =	{Keywords: hyperplane transversal, high-dimension, hardness}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail