Search Results

Documents authored by Besa, Juan José


Found 2 Possible Name Variants:

Besa, Juan Jose

Document
Taming the Knight’s Tour: Minimizing Turns and Crossings

Authors: Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
We introduce two new metrics of "simplicity" for knight’s tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with 9.5n+O(1) turns and 13n+O(1) crossings on a n× n board, and we show lower bounds of (6-ε)n and 4n-O(1) on the respective problems of minimizing these metrics. Hence, our algorithm achieves approximation ratios of 19/12+o(1) and 13/4+o(1). We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for (1,4)-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.

Cite as

Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda. Taming the Knight’s Tour: Minimizing Turns and Crossings. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.FUN.2021.4,
  author =	{Besa, Juan Jose and Johnson, Timothy and Mamano, Nil and Osegueda, Martha C.},
  title =	{{Taming the Knight’s Tour: Minimizing Turns and Crossings}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.4},
  URN =		{urn:nbn:de:0030-drops-127654},
  doi =		{10.4230/LIPIcs.FUN.2021.4},
  annote =	{Keywords: Graph Drawing, Chess, Hamiltonian Cycle, Approximation Algorithms}
}
Document
Computing k-Modal Embeddings of Planar Digraphs

Authors: Juan José Besa, Giordano Da Lozzo, and Michael T. Goodrich

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family.

Cite as

Juan José Besa, Giordano Da Lozzo, and Michael T. Goodrich. Computing k-Modal Embeddings of Planar Digraphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ESA.2019.19,
  author =	{Besa, Juan Jos\'{e} and Da Lozzo, Giordano and Goodrich, Michael T.},
  title =	{{Computing k-Modal Embeddings of Planar Digraphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.19},
  URN =		{urn:nbn:de:0030-drops-111404},
  doi =		{10.4230/LIPIcs.ESA.2019.19},
  annote =	{Keywords: Modal Embeddings, Planarity, Directed Graphs, SPQR trees, NAESAT}
}
Document
Optimally Sorting Evolving Data

Authors: Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We give optimal sorting algorithms in the evolving data framework, where an algorithm's input data is changing while the algorithm is executing. In this framework, instead of producing a final output, an algorithm attempts to maintain an output close to the correct output for the current state of the data, repeatedly updating its best estimate of a correct output over time. We show that a simple repeated insertion-sort algorithm can maintain an O(n) Kendall tau distance, with high probability, between a maintained list and an underlying total order of n items in an evolving data model where each comparison is followed by a swap between a random consecutive pair of items in the underlying total order. This result is asymptotically optimal, since there is an Omega(n) lower bound for Kendall tau distance for this problem. Our result closes the gap between this lower bound and the previous best algorithm for this problem, which maintains a Kendall tau distance of O(n log log n) with high probability. It also confirms previous experimental results that suggested that insertion sort tends to perform better than quicksort in practice.

Cite as

Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson. Optimally Sorting Evolving Data. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 81:1-81:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ICALP.2018.81,
  author =	{Besa, Juan Jose and Devanny, William E. and Eppstein, David and Goodrich, Michael T. and Johnson, Timothy},
  title =	{{Optimally Sorting Evolving Data}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{81:1--81:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.81},
  URN =		{urn:nbn:de:0030-drops-90858},
  doi =		{10.4230/LIPIcs.ICALP.2018.81},
  annote =	{Keywords: Sorting, Evolving data, Insertion sort}
}

Besa, Juan José

Document
Taming the Knight’s Tour: Minimizing Turns and Crossings

Authors: Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda

Published in: LIPIcs, Volume 157, 10th International Conference on Fun with Algorithms (FUN 2021) (2020)


Abstract
We introduce two new metrics of "simplicity" for knight’s tours: the number of turns and the number of crossings. We give a novel algorithm that produces tours with 9.5n+O(1) turns and 13n+O(1) crossings on a n× n board, and we show lower bounds of (6-ε)n and 4n-O(1) on the respective problems of minimizing these metrics. Hence, our algorithm achieves approximation ratios of 19/12+o(1) and 13/4+o(1). We generalize our techniques to rectangular boards, high-dimensional boards, symmetric tours, odd boards with a missing corner, and tours for (1,4)-leapers. In doing so, we show that these extensions also admit a constant approximation ratio on the minimum number of turns, and on the number of crossings in most cases.

Cite as

Juan Jose Besa, Timothy Johnson, Nil Mamano, and Martha C. Osegueda. Taming the Knight’s Tour: Minimizing Turns and Crossings. In 10th International Conference on Fun with Algorithms (FUN 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 157, pp. 4:1-4:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.FUN.2021.4,
  author =	{Besa, Juan Jose and Johnson, Timothy and Mamano, Nil and Osegueda, Martha C.},
  title =	{{Taming the Knight’s Tour: Minimizing Turns and Crossings}},
  booktitle =	{10th International Conference on Fun with Algorithms (FUN 2021)},
  pages =	{4:1--4:20},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-145-0},
  ISSN =	{1868-8969},
  year =	{2020},
  volume =	{157},
  editor =	{Farach-Colton, Martin and Prencipe, Giuseppe and Uehara, Ryuhei},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FUN.2021.4},
  URN =		{urn:nbn:de:0030-drops-127654},
  doi =		{10.4230/LIPIcs.FUN.2021.4},
  annote =	{Keywords: Graph Drawing, Chess, Hamiltonian Cycle, Approximation Algorithms}
}
Document
Computing k-Modal Embeddings of Planar Digraphs

Authors: Juan José Besa, Giordano Da Lozzo, and Michael T. Goodrich

Published in: LIPIcs, Volume 144, 27th Annual European Symposium on Algorithms (ESA 2019)


Abstract
Given a planar digraph G and a positive even integer k, an embedding of G in the plane is k-modal, if every vertex of G is incident to at most k pairs of consecutive edges with opposite orientations, i.e., the incoming and the outgoing edges at each vertex are grouped by the embedding into at most k sets of consecutive edges with the same orientation. In this paper, we study the k-Modality problem, which asks for the existence of a k-modal embedding of a planar digraph. This combinatorial problem is at the very core of a variety of constrained embedding questions for planar digraphs and flat clustered networks. First, since the 2-Modality problem can be easily solved in linear time, we consider the general k-Modality problem for any value of k>2 and show that the problem is NP-complete for planar digraphs of maximum degree Delta <= k+3. We relate its computational complexity to that of two notions of planarity for flat clustered networks: Planar Intersection-Link and Planar NodeTrix representations. This allows us to answer in the strongest possible way an open question by Di Giacomo [https://doi.org/10.1007/978-3-319-73915-1_37], concerning the complexity of constructing planar NodeTrix representations of flat clustered networks with small clusters, and to address a research question by Angelini et al. [https://doi.org/10.7155/jgaa.00437], concerning intersection-link representations based on geometric objects that determine complex arrangements. On the positive side, we provide a simple FPT algorithm for partial 2-trees of arbitrary degree, whose running time is exponential in k and linear in the input size. Second, motivated by the recently-introduced planar L-drawings of planar digraphs [https://doi.org/10.1007/978-3-319-73915-1_36], which require the computation of a 4-modal embedding, we focus our attention on k=4. On the algorithmic side, we show a complexity dichotomy for the 4-Modality problem with respect to Delta, by providing a linear-time algorithm for planar digraphs with Delta <= 6. This algorithmic result is based on decomposing the input digraph into its blocks via BC-trees and each of these blocks into its triconnected components via SPQR-trees. In particular, we are able to show that the constraints imposed on the embedding by the rigid triconnected components can be tackled by means of a small set of reduction rules and discover that the algorithmic core of the problem lies in special instances of NAESAT, which we prove to be always NAE-satisfiable - a result of independent interest that improves on Porschen et al. [https://doi.org/10.1007/978-3-540-24605-3_14]. Finally, on the combinatorial side, we consider outerplanar digraphs and show that any such a digraph always admits a k-modal embedding with k=4 and that this value of k is best possible for the digraphs in this family.

Cite as

Juan José Besa, Giordano Da Lozzo, and Michael T. Goodrich. Computing k-Modal Embeddings of Planar Digraphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 144, pp. 19:1-19:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ESA.2019.19,
  author =	{Besa, Juan Jos\'{e} and Da Lozzo, Giordano and Goodrich, Michael T.},
  title =	{{Computing k-Modal Embeddings of Planar Digraphs}},
  booktitle =	{27th Annual European Symposium on Algorithms (ESA 2019)},
  pages =	{19:1--19:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-124-5},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{144},
  editor =	{Bender, Michael A. and Svensson, Ola and Herman, Grzegorz},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2019.19},
  URN =		{urn:nbn:de:0030-drops-111404},
  doi =		{10.4230/LIPIcs.ESA.2019.19},
  annote =	{Keywords: Modal Embeddings, Planarity, Directed Graphs, SPQR trees, NAESAT}
}
Document
Optimally Sorting Evolving Data

Authors: Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson

Published in: LIPIcs, Volume 107, 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)


Abstract
We give optimal sorting algorithms in the evolving data framework, where an algorithm's input data is changing while the algorithm is executing. In this framework, instead of producing a final output, an algorithm attempts to maintain an output close to the correct output for the current state of the data, repeatedly updating its best estimate of a correct output over time. We show that a simple repeated insertion-sort algorithm can maintain an O(n) Kendall tau distance, with high probability, between a maintained list and an underlying total order of n items in an evolving data model where each comparison is followed by a swap between a random consecutive pair of items in the underlying total order. This result is asymptotically optimal, since there is an Omega(n) lower bound for Kendall tau distance for this problem. Our result closes the gap between this lower bound and the previous best algorithm for this problem, which maintains a Kendall tau distance of O(n log log n) with high probability. It also confirms previous experimental results that suggested that insertion sort tends to perform better than quicksort in practice.

Cite as

Juan Jose Besa, William E. Devanny, David Eppstein, Michael T. Goodrich, and Timothy Johnson. Optimally Sorting Evolving Data. In 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 107, pp. 81:1-81:13, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{besa_et_al:LIPIcs.ICALP.2018.81,
  author =	{Besa, Juan Jose and Devanny, William E. and Eppstein, David and Goodrich, Michael T. and Johnson, Timothy},
  title =	{{Optimally Sorting Evolving Data}},
  booktitle =	{45th International Colloquium on Automata, Languages, and Programming (ICALP 2018)},
  pages =	{81:1--81:13},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-076-7},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{107},
  editor =	{Chatzigiannakis, Ioannis and Kaklamanis, Christos and Marx, D\'{a}niel and Sannella, Donald},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2018.81},
  URN =		{urn:nbn:de:0030-drops-90858},
  doi =		{10.4230/LIPIcs.ICALP.2018.81},
  annote =	{Keywords: Sorting, Evolving data, Insertion sort}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail