Search Results

Documents authored by Bhuiyan, Ashikahmed


Document
Precise Scheduling of DAG Tasks with Dynamic Power Management

Authors: Ashikahmed Bhuiyan, Mohammad Pivezhandi, Zhishan Guo, Jing Li, Venkata Prashant Modekurthy, and Abusayeed Saifullah

Published in: LIPIcs, Volume 262, 35th Euromicro Conference on Real-Time Systems (ECRTS 2023)


Abstract
The rigid timing requirement of real-time applications biases the analysis to focus on the worst-case performances. Such a focus cannot provide enough information to optimize the system’s typical resource and energy consumption. In this work, we study the real-time scheduling of parallel tasks on a multi-speed heterogeneous platform while minimizing their typical-case CPU energy consumption. Dynamic power management (DPM) policy is integrated to determine the minimum number of cores required for each task while guaranteeing worst-case execution requirements (under all circumstances). A Hungarian Algorithm-based task partitioning technique is proposed for clustered multi-core platforms, where all cores within the same cluster run at the same speed at any time, while different clusters may run at different speeds. To our knowledge, this is the first work aiming to minimize typical-case CPU energy consumption (while ensuring the worst-case timing correctness for all tasks under any execution condition) through DPM for parallel tasks in a clustered platform. We demonstrate the effectiveness of the proposed approach with existing power management techniques using experimental results and simulations. The experimental results conducted on the Intel Xeon 2680 v3 12-core platform show around 7%-30% additional energy savings.

Cite as

Ashikahmed Bhuiyan, Mohammad Pivezhandi, Zhishan Guo, Jing Li, Venkata Prashant Modekurthy, and Abusayeed Saifullah. Precise Scheduling of DAG Tasks with Dynamic Power Management. In 35th Euromicro Conference on Real-Time Systems (ECRTS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 262, pp. 8:1-8:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bhuiyan_et_al:LIPIcs.ECRTS.2023.8,
  author =	{Bhuiyan, Ashikahmed and Pivezhandi, Mohammad and Guo, Zhishan and Li, Jing and Modekurthy, Venkata Prashant and Saifullah, Abusayeed},
  title =	{{Precise Scheduling of DAG Tasks with Dynamic Power Management}},
  booktitle =	{35th Euromicro Conference on Real-Time Systems (ECRTS 2023)},
  pages =	{8:1--8:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-280-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{262},
  editor =	{Papadopoulos, Alessandro V.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2023.8},
  URN =		{urn:nbn:de:0030-drops-180372},
  doi =		{10.4230/LIPIcs.ECRTS.2023.8},
  annote =	{Keywords: Parallel task, mixed-criticality scheduling, energy minimization, dynamic power management, cluster-based platform}
}
Document
Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks

Authors: Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong

Published in: LIPIcs, Volume 76, 29th Euromicro Conference on Real-Time Systems (ECRTS 2017)


Abstract
In this work, we study energy-aware real-time scheduling of a set of sporadic Directed Acyclic Graph (DAG) tasks with implicit deadlines. While meeting all real-time constraints, we try to identify the best task allocation and execution pattern such that the average power consumption of the whole platform is minimized. To the best of our knowledge, this is the first work that addresses the power consumption issue in scheduling multiple DAG tasks on multi-cores and allows intra-task processor sharing. We first adapt the decomposition-based framework for federated scheduling and propose an energy-sub-optimal scheduler. Then we derive an approximation algorithm to identify processors to be merged together for further improvements in energy-efficiency and to prove the bound of the approximation ratio. We perform a simulation study to demonstrate the effectiveness and efficiency of the proposed scheduling. The simulation results show that our algorithms achieve an energy saving of 27% to 41% compared to existing DAG task schedulers.

Cite as

Zhishan Guo, Ashikahmed Bhuiyan, Abusayeed Saifullah, Nan Guan, and Haoyi Xiong. Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks. In 29th Euromicro Conference on Real-Time Systems (ECRTS 2017). Leibniz International Proceedings in Informatics (LIPIcs), Volume 76, pp. 22:1-22:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2017)


Copy BibTex To Clipboard

@InProceedings{guo_et_al:LIPIcs.ECRTS.2017.22,
  author =	{Guo, Zhishan and Bhuiyan, Ashikahmed and Saifullah, Abusayeed and Guan, Nan and Xiong, Haoyi},
  title =	{{Energy-Efficient Multi-Core Scheduling for Real-Time DAG Tasks}},
  booktitle =	{29th Euromicro Conference on Real-Time Systems (ECRTS 2017)},
  pages =	{22:1--22:21},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-037-8},
  ISSN =	{1868-8969},
  year =	{2017},
  volume =	{76},
  editor =	{Bertogna, Marko},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2017.22},
  URN =		{urn:nbn:de:0030-drops-71675},
  doi =		{10.4230/LIPIcs.ECRTS.2017.22},
  annote =	{Keywords: Parallel task, Real-time scheduling, Energy minimization, Convex optimization}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail