Search Results

Documents authored by Blondeau-Patissier, Lison


Document
Strategies as Resource Terms, and Their Categorical Semantics

Authors: Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair

Published in: LIPIcs, Volume 260, 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)


Abstract
As shown by Tsukada and Ong, simply-typed, normal and η-long resource terms correspond to plays in Hyland-Ong games, quotiented by Melliès' homotopy equivalence. Though inspiring, their proof is indirect, relying on the injectivity of the relational model {w.r.t.} both sides of the correspondence - in particular, the dynamics of the resource calculus is taken into account only via the compatibility of the relational model with the composition of normal terms defined by normalization. In the present paper, we revisit and extend these results. Our first contribution is to restate the correspondence by considering causal structures we call augmentations, which are canonical representatives of Hyland-Ong plays up to homotopy. This allows us to give a direct and explicit account of the connection with normal resource terms. As a second contribution, we extend this account to the reduction of resource terms: building on a notion of strategies as weighted sums of augmentations, we provide a denotational model of the resource calculus, invariant under reduction. A key step - and our third contribution - is a categorical model we call a resource category, which is to the resource calculus what differential categories are to the differential λ-calculus.

Cite as

Lison Blondeau-Patissier, Pierre Clairambault, and Lionel Vaux Auclair. Strategies as Resource Terms, and Their Categorical Semantics. In 8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 260, pp. 13:1-13:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{blondeaupatissier_et_al:LIPIcs.FSCD.2023.13,
  author =	{Blondeau-Patissier, Lison and Clairambault, Pierre and Vaux Auclair, Lionel},
  title =	{{Strategies as Resource Terms, and Their Categorical Semantics}},
  booktitle =	{8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023)},
  pages =	{13:1--13:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-277-8},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{260},
  editor =	{Gaboardi, Marco and van Raamsdonk, Femke},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2023.13},
  URN =		{urn:nbn:de:0030-drops-179976},
  doi =		{10.4230/LIPIcs.FSCD.2023.13},
  annote =	{Keywords: Resource calculus, Game semantics, Categorical semantics}
}
Document
Positional Injectivity for Innocent Strategies

Authors: Lison Blondeau-Patissier and Pierre Clairambault

Published in: LIPIcs, Volume 195, 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)


Abstract
In asynchronous games, Melliès proved that innocent strategies are positional: their behaviour only depends on the position, not the temporal order used to reach it. This insightful result shaped our understanding of the link between dynamic (i.e. game) and static (i.e. relational) semantics. In this paper, we investigate the positionality of innocent strategies in the traditional setting of Hyland-Ong-Nickau-Coquand pointer games. We show that though innocent strategies are not positional, total finite innocent strategies still enjoy a key consequence of positionality, namely positional injectivity: they are entirely determined by their positions. Unfortunately, this does not hold in general: we show a counter-example if finiteness and totality are lifted. For finite partial strategies we leave the problem open; we show however the partial result that two strategies with the same positions must have the same P-views of maximal length.

Cite as

Lison Blondeau-Patissier and Pierre Clairambault. Positional Injectivity for Innocent Strategies. In 6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 195, pp. 17:1-17:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{blondeaupatissier_et_al:LIPIcs.FSCD.2021.17,
  author =	{Blondeau-Patissier, Lison and Clairambault, Pierre},
  title =	{{Positional Injectivity for Innocent Strategies}},
  booktitle =	{6th International Conference on Formal Structures for Computation and Deduction (FSCD 2021)},
  pages =	{17:1--17:22},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-191-7},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{195},
  editor =	{Kobayashi, Naoki},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSCD.2021.17},
  URN =		{urn:nbn:de:0030-drops-142555},
  doi =		{10.4230/LIPIcs.FSCD.2021.17},
  annote =	{Keywords: Game Semantics, Innocence, Relational Semantics, Positionality}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail