Search Results

Documents authored by Bodini, Olivier


Document
Asymptotic Distribution of Parameters in Random Maps

Authors: Olivier Bodini, Julien Courtiel, Sergey Dovgal, and Hsien-Kuei Hwang

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
We consider random rooted maps without regard to their genus, with fixed large number of edges, and address the problem of limiting distributions for six different parameters: vertices, leaves, loops, root edges, root isthmus, and root vertex degree. Each of these leads to a different limiting distribution, varying from (discrete) geometric and Poisson distributions to different continuous ones: Beta, normal, uniform, and an unusual distribution whose moments are characterised by a recursive triangular array.

Cite as

Olivier Bodini, Julien Courtiel, Sergey Dovgal, and Hsien-Kuei Hwang. Asymptotic Distribution of Parameters in Random Maps. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 13:1-13:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bodini_et_al:LIPIcs.AofA.2018.13,
  author =	{Bodini, Olivier and Courtiel, Julien and Dovgal, Sergey and Hwang, Hsien-Kuei},
  title =	{{Asymptotic Distribution of Parameters in Random Maps}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{13:1--13:12},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.13},
  URN =		{urn:nbn:de:0030-drops-89069},
  doi =		{10.4230/LIPIcs.AofA.2018.13},
  annote =	{Keywords: Random maps, Analytic combinatorics, Rooted Maps, Beta law, Limit laws, Patterns, Generating functions, Riccati equation}
}
Document
Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes

Authors: Olivier Bodini, Matthieu Dien, Antoine Genitrini, and Alfredo Viola

Published in: LIPIcs, Volume 110, 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)


Abstract
In this paper we focus on concurrent processes built on synchronization by means of futures. This concept is an abstraction for processes based on a main execution thread but allowing to delay some computations. The structure of a general concurrent process is a directed acyclic graph (DAG). Since the quantitative study of increasingly labeled DAG (directly related to processes) seems out of reach (this is a #P-complete problem), we restrict ourselves to the study of arch processes, a simplistic model of processes with futures. They are based on two parameters related to their sizes and their numbers of arches. The increasingly labeled structures seems not to be specifiable in the classical sense of Analytic Combinatorics, but we manage to derive a recurrence equation for the enumeration. For this model we first exhibit an exact and an asymptotic formula for the number of runs of a given process. The second main contribution is composed of a uniform random sampler algorithm and an unranking one that allow efficient generation and exhaustive enumeration of the runs of a given arch process.

Cite as

Olivier Bodini, Matthieu Dien, Antoine Genitrini, and Alfredo Viola. Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes. In 29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018). Leibniz International Proceedings in Informatics (LIPIcs), Volume 110, pp. 14:1-14:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2018)


Copy BibTex To Clipboard

@InProceedings{bodini_et_al:LIPIcs.AofA.2018.14,
  author =	{Bodini, Olivier and Dien, Matthieu and Genitrini, Antoine and Viola, Alfredo},
  title =	{{Beyond Series-Parallel Concurrent Systems: The Case of Arch Processes}},
  booktitle =	{29th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2018)},
  pages =	{14:1--14:14},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-078-1},
  ISSN =	{1868-8969},
  year =	{2018},
  volume =	{110},
  editor =	{Fill, James Allen and Ward, Mark Daniel},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.AofA.2018.14},
  URN =		{urn:nbn:de:0030-drops-89075},
  doi =		{10.4230/LIPIcs.AofA.2018.14},
  annote =	{Keywords: Concurrency Theory, Future, Uniform Random Sampling, Unranking, Analytic Combinatorics}
}
Document
The Combinatorics of Non-determinism

Authors: Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski

Published in: LIPIcs, Volume 24, IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)


Abstract
A deep connection exists between the interleaving semantics of concurrent processes and increasingly labelled combinatorial structures. In this paper we further explore this connection by studying the rich combinatorics of partially increasing structures underlying the operator of non-deterministic choice. Following the symbolic method of analytic combinatorics, we study the size of the computation trees induced by typical non-deterministic processes, providing a precise quantitative measure of the so-called "combinatorial explosion" phenomenon. Alternatively, we can see non-deterministic choice as encoding a family of tree-like partial orders. Measuring the (rather large) size of this family on average offers a key witness to the expressiveness of the choice operator. As a practical outcome of our quantitative study, we describe an efficient algorithm for generating computation paths uniformly at random.

Cite as

Olivier Bodini, Antoine Genitrini, and Frédéric Peschanski. The Combinatorics of Non-determinism. In IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013). Leibniz International Proceedings in Informatics (LIPIcs), Volume 24, pp. 425-436, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2013)


Copy BibTex To Clipboard

@InProceedings{bodini_et_al:LIPIcs.FSTTCS.2013.425,
  author =	{Bodini, Olivier and Genitrini, Antoine and Peschanski, Fr\'{e}d\'{e}ric},
  title =	{{The Combinatorics of Non-determinism}},
  booktitle =	{IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2013)},
  pages =	{425--436},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-939897-64-4},
  ISSN =	{1868-8969},
  year =	{2013},
  volume =	{24},
  editor =	{Seth, Anil and Vishnoi, Nisheeth K.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.FSTTCS.2013.425},
  URN =		{urn:nbn:de:0030-drops-43901},
  doi =		{10.4230/LIPIcs.FSTTCS.2013.425},
  annote =	{Keywords: Concurrency theory, Analytic combinatorics, Non-deterministic choice, Partially increasing trees, Uniform random generation}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail