Search Results

Documents authored by Bonet, Maria Luisa


Document
MaxSAT Resolution with Inclusion Redundancy

Authors: Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria

Published in: LIPIcs, Volume 305, 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)


Abstract
Popular redundancy rules for SAT are not necessarily sound for MaxSAT. The works of [Bonacina-Bonet-Buss-Lauria'24] and [Ihalainen-Berg-Järvisalo'22] proposed ways to adapt them, but required specific encodings and more sophisticated checks during proof verification. Here, we propose a different way to adapt redundancy rules from SAT to MaxSAT. Our rules do not require specific encodings, their correctness is simpler to check, but they are slightly less expressive. However, the proposed redundancy rules, when added to MaxSAT-Resolution, are already strong enough to capture Branch-and-bound algorithms, enable short proofs of the optimal cost of notable principles (e.g., the Pigeonhole Principle and the Parity Principle), and allow to break simple symmetries (e.g., XOR-ification does not make formulas harder).

Cite as

Ilario Bonacina, Maria Luisa Bonet, and Massimo Lauria. MaxSAT Resolution with Inclusion Redundancy. In 27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 305, pp. 7:1-7:15, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bonacina_et_al:LIPIcs.SAT.2024.7,
  author =	{Bonacina, Ilario and Bonet, Maria Luisa and Lauria, Massimo},
  title =	{{MaxSAT Resolution with Inclusion Redundancy}},
  booktitle =	{27th International Conference on Theory and Applications of Satisfiability Testing (SAT 2024)},
  pages =	{7:1--7:15},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-334-8},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{305},
  editor =	{Chakraborty, Supratik and Jiang, Jie-Hong Roland},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2024.7},
  URN =		{urn:nbn:de:0030-drops-205298},
  doi =		{10.4230/LIPIcs.SAT.2024.7},
  annote =	{Keywords: MaxSAT, Redundancy, MaxSAT resolution, Branch-and-bound, Pigeonhole principle, Parity Principle}
}
Document
Polynomial Calculus for MaxSAT

Authors: Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy

Published in: LIPIcs, Volume 271, 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)


Abstract
MaxSAT is the problem of finding an assignment satisfying the maximum number of clauses in a CNF formula. We consider a natural generalization of this problem to generic sets of polynomials and propose a weighted version of Polynomial Calculus to address this problem. Weighted Polynomial Calculus is a natural generalization of MaxSAT-Resolution and weighted Resolution that manipulates polynomials with coefficients in a finite field and either weights in ℕ or ℤ. We show the soundness and completeness of these systems via an algorithmic procedure. Weighted Polynomial Calculus, with weights in ℕ and coefficients in 𝔽₂, is able to prove efficiently that Tseitin formulas on a connected graph are minimally unsatisfiable. Using weights in ℤ, it also proves efficiently that the Pigeonhole Principle is minimally unsatisfiable.

Cite as

Ilario Bonacina, Maria Luisa Bonet, and Jordi Levy. Polynomial Calculus for MaxSAT. In 26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 271, pp. 5:1-5:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)


Copy BibTex To Clipboard

@InProceedings{bonacina_et_al:LIPIcs.SAT.2023.5,
  author =	{Bonacina, Ilario and Bonet, Maria Luisa and Levy, Jordi},
  title =	{{Polynomial Calculus for MaxSAT}},
  booktitle =	{26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023)},
  pages =	{5:1--5:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-286-0},
  ISSN =	{1868-8969},
  year =	{2023},
  volume =	{271},
  editor =	{Mahajan, Meena and Slivovsky, Friedrich},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SAT.2023.5},
  URN =		{urn:nbn:de:0030-drops-184670},
  doi =		{10.4230/LIPIcs.SAT.2023.5},
  annote =	{Keywords: Polynomial Calculus, MaxSAT, Proof systems, Algebraic reasoning}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail