Search Results

Documents authored by Bravetti, Mario


Document
A Sound and Complete Characterization of Fair Asynchronous Session Subtyping

Authors: Mario Bravetti, Luca Padovani, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 348, 36th International Conference on Concurrency Theory (CONCUR 2025)


Abstract
Session types are abstractions of communication protocols enabling the static analysis of message-passing processes. Refinement notions for session types are key to support safe forms of process substitution while preserving their compatibility with the rest of the system. Recently, a fair refinement relation for asynchronous session types has been defined allowing the anticipation of message outputs with respect to an unbounded number of message inputs. This refinement is useful to capture common patterns in communication protocols that take advantage of asynchrony. However, while the semantic (à la testing) definition of such refinement is straightforward, its characterization has proved to be quite challenging. In fact, only a sound but not complete characterization is known so far. In this paper we close this open problem by presenting a sound and complete characterization of asynchronous fair refinement for session types. We relate this characterization to those given in the literature for synchronous session types by leveraging a novel labelled transition system of session types that embeds their asynchronous semantics.

Cite as

Mario Bravetti, Luca Padovani, and Gianluigi Zavattaro. A Sound and Complete Characterization of Fair Asynchronous Session Subtyping. In 36th International Conference on Concurrency Theory (CONCUR 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 348, pp. 11:1-11:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2025.11,
  author =	{Bravetti, Mario and Padovani, Luca and Zavattaro, Gianluigi},
  title =	{{A Sound and Complete Characterization of Fair Asynchronous Session Subtyping}},
  booktitle =	{36th International Conference on Concurrency Theory (CONCUR 2025)},
  pages =	{11:1--11:17},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-389-8},
  ISSN =	{1868-8969},
  year =	{2025},
  volume =	{348},
  editor =	{Bouyer, Patricia and van de Pol, Jaco},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2025.11},
  URN =		{urn:nbn:de:0030-drops-239615},
  doi =		{10.4230/LIPIcs.CONCUR.2025.11},
  annote =	{Keywords: Binary sessions, session types, fair asynchronous subtyping}
}
Document
Behavioural Up/down Casting For Statically Typed Languages

Authors: Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara

Published in: LIPIcs, Volume 313, 38th European Conference on Object-Oriented Programming (ECOOP 2024)


Abstract
We provide support for polymorphism in static typestate analysis for object-oriented languages with upcasts and downcasts. Recent work has shown how typestate analysis can be embedded in the development of Java programs to obtain safer behaviour at runtime, e.g., absence of null pointer errors and protocol completion. In that approach, inheritance is supported at the price of limiting casts in source code, thus only allowing those at the beginning of the protocol, i.e., immediately after objects creation, or at the end, and in turn seriously affecting the applicability of the analysis. In this paper, we provide a solution to this open problem in typestate analysis by introducing a theory based on a richer data structure, named typestate tree, which supports upcast and downcast operations at any point of the protocol by leveraging union and intersection types. The soundness of the typestate tree-based approach has been mechanised in Coq. The theory can be applied to most object-oriented languages statically analysable through typestates, thus opening new scenarios for acceptance of programs exploiting inheritance and casting. To defend this thesis, we show an application of the theory, by embedding the typestate tree mechanism in a Java-like object-oriented language, and proving its soundness.

Cite as

Lorenzo Bacchiani, Mario Bravetti, Marco Giunti, João Mota, and António Ravara. Behavioural Up/down Casting For Statically Typed Languages. In 38th European Conference on Object-Oriented Programming (ECOOP 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 313, pp. 5:1-5:28, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{bacchiani_et_al:LIPIcs.ECOOP.2024.5,
  author =	{Bacchiani, Lorenzo and Bravetti, Mario and Giunti, Marco and Mota, Jo\~{a}o and Ravara, Ant\'{o}nio},
  title =	{{Behavioural Up/down Casting For Statically Typed Languages}},
  booktitle =	{38th European Conference on Object-Oriented Programming (ECOOP 2024)},
  pages =	{5:1--5:28},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-341-6},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{313},
  editor =	{Aldrich, Jonathan and Salvaneschi, Guido},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECOOP.2024.5},
  URN =		{urn:nbn:de:0030-drops-208543},
  doi =		{10.4230/LIPIcs.ECOOP.2024.5},
  annote =	{Keywords: Behavioural types, object-oriented programming, subtyping, cast, typestates}
}
Document
A Sound Algorithm for Asynchronous Session Subtyping

Authors: Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro

Published in: LIPIcs, Volume 140, 30th International Conference on Concurrency Theory (CONCUR 2019)


Abstract
Session types, types for structuring communication between endpoints in distributed systems, are recently being integrated into mainstream programming languages. In practice, a very important notion for dealing with such types is that of subtyping, since it allows for typing larger classes of system, where a program has not precisely the expected behavior but a similar one. Unfortunately, recent work has shown that subtyping for session types in an asynchronous setting is undecidable. To cope with this negative result, the only approaches we are aware of either restrict the syntax of session types or limit communication (by considering forms of bounded asynchrony). Both approaches are too restrictive in practice, hence we proceed differently by presenting an algorithm for checking subtyping which is sound, but not complete (in some cases it terminates without returning a decisive verdict). The algorithm is based on a tree representation of the coinductive definition of asynchronous subtyping; this tree could be infinite, and the algorithm checks for the presence of finite witnesses of infinite successful subtrees. Furthermore, we provide a tool that implements our algorithm and we apply it to many examples that cannot be managed with the previous approaches.

Cite as

Mario Bravetti, Marco Carbone, Julien Lange, Nobuko Yoshida, and Gianluigi Zavattaro. A Sound Algorithm for Asynchronous Session Subtyping. In 30th International Conference on Concurrency Theory (CONCUR 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 140, pp. 38:1-38:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{bravetti_et_al:LIPIcs.CONCUR.2019.38,
  author =	{Bravetti, Mario and Carbone, Marco and Lange, Julien and Yoshida, Nobuko and Zavattaro, Gianluigi},
  title =	{{A Sound Algorithm for Asynchronous Session Subtyping}},
  booktitle =	{30th International Conference on Concurrency Theory (CONCUR 2019)},
  pages =	{38:1--38:16},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-121-4},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{140},
  editor =	{Fokkink, Wan and van Glabbeek, Rob},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.CONCUR.2019.38},
  URN =		{urn:nbn:de:0030-drops-109408},
  doi =		{10.4230/LIPIcs.CONCUR.2019.38},
  annote =	{Keywords: Session types, Concurrency, Subtyping, Algorithm}
}
Any Issues?
X

Feedback on the Current Page

CAPTCHA

Thanks for your feedback!

Feedback submitted to Dagstuhl Publishing

Could not send message

Please try again later or send an E-mail