Document

**Published in:** LIPIcs, Volume 272, 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)

In the online simple knapsack problem, a knapsack of unit size 1 is given and an algorithm is tasked to fill it using a set of items that are revealed one after another. Each item must be accepted or rejected at the time they are presented, and these decisions are irrevocable. No prior knowledge about the set and sequence of items is given. The goal is then to maximize the sum of the sizes of all packed items compared to an optimal packing of all items of the sequence.
In this paper, we combine two existing variants of the problem that each extend the range of possible actions for a newly presented item by a new option. The first is removability, in which an item that was previously packed into the knapsack may be finally discarded at any point. The second is reservations, which allows the algorithm to delay the decision on accepting or rejecting a new item indefinitely for a proportional fee relative to the size of the given item.
If both removability and reservations are permitted, we show that the competitive ratio of the online simple knapsack problem rises depending on the relative reservation costs. As soon as any nonzero fee has to be paid for a reservation, no online algorithm can be better than 1.5-competitive. With rising reservation costs, this competitive ratio increases up to the golden ratio (ϕ ≈ 1.618) that is reached for relative reservation costs of 1-√5/3 ≈ 0.254. We provide a matching upper and lower bound for relative reservation costs up to this value. From this point onward, the tight bound by Iwama and Taketomi for the removable knapsack problem is the best possible competitive ratio, not using any reservations.

Elisabet Burjons, Matthias Gehnen, Henri Lotze, Daniel Mock, and Peter Rossmanith. The Online Simple Knapsack Problem with Reservation and Removability. In 48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 272, pp. 29:1-29:12, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)

Copy BibTex To Clipboard

@InProceedings{burjons_et_al:LIPIcs.MFCS.2023.29, author = {Burjons, Elisabet and Gehnen, Matthias and Lotze, Henri and Mock, Daniel and Rossmanith, Peter}, title = {{The Online Simple Knapsack Problem with Reservation and Removability}}, booktitle = {48th International Symposium on Mathematical Foundations of Computer Science (MFCS 2023)}, pages = {29:1--29:12}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-292-1}, ISSN = {1868-8969}, year = {2023}, volume = {272}, editor = {Leroux, J\'{e}r\^{o}me and Lombardy, Sylvain and Peleg, David}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2023.29}, URN = {urn:nbn:de:0030-drops-185635}, doi = {10.4230/LIPIcs.MFCS.2023.29}, annote = {Keywords: online algorithm, knapsack, competitive ratio, reservation, preemption} }

Document

**Published in:** LIPIcs, Volume 214, 16th International Symposium on Parameterized and Exact Computation (IPEC 2021)

The non-existence of polynomial kernels for OR- and AND-compositional problems is now a well-established result. Some of these problems have adaptive or non-adaptive polynomial Turing kernels. Up to now, most known polynomial Turing kernels are non-adaptive and most of them are of the conjunctive or disjunctive kind. For some problems it has been conjectured that the existence of polynomial Turing kernels is unlikely. For instance, either all or none of the WK[1]-complete problems have polynomial Turing kernels. While it has been conjectured that they do not, a proof tying their non-existence to some complexity theoretic assumption is still missing and seems to be beyond the reach of today’s standard techniques.
In this paper, we prove that OR-compositional problems and all WK[1]-hard problems do not have conjunctive polynomial kernels, a special type of non-adaptive Turing kernels, under the assumption that coNP ⊈ NP/poly. Similarly, it is unlikely that AND-compositional problems have disjunctive polynomial kernels. Moreover, we present a way to prove that the parameterized versions of some ⊕ P-hard problems, for instance, Odd Path on planar graphs, do not have conjunctive or disjunctive polynomial kernels, unless coNP ⊆ NP/poly. Finally, we identify a problem that is unlikely to have either a conjunctive or disjunctive polynomial kernel, unless coNP ⊆ NP/poly, due to a reduction from an NP-hard problem instead: Weighted Odd Path on planar graphs.

Elisabet Burjons and Peter Rossmanith. Lower Bounds for Conjunctive and Disjunctive Turing Kernels. In 16th International Symposium on Parameterized and Exact Computation (IPEC 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 214, pp. 12:1-12:17, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{burjons_et_al:LIPIcs.IPEC.2021.12, author = {Burjons, Elisabet and Rossmanith, Peter}, title = {{Lower Bounds for Conjunctive and Disjunctive Turing Kernels}}, booktitle = {16th International Symposium on Parameterized and Exact Computation (IPEC 2021)}, pages = {12:1--12:17}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-216-7}, ISSN = {1868-8969}, year = {2021}, volume = {214}, editor = {Golovach, Petr A. and Zehavi, Meirav}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.IPEC.2021.12}, URN = {urn:nbn:de:0030-drops-153953}, doi = {10.4230/LIPIcs.IPEC.2021.12}, annote = {Keywords: Parameterized Complexity, Turing kernels} }

Document

**Published in:** LIPIcs, Volume 187, 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)

In the Online Simple Knapsack Problem we are given a knapsack of unit size 1. Items of size smaller or equal to 1 are presented in an iterative fashion and an algorithm has to decide whether to permanently reject or include each item into the knapsack without any knowledge about the rest of the instance. The goal is then to pack the knapsack as full as possible. In this work, we introduce a third option additional to those of packing and rejecting an item, namely that of reserving an item for the cost of a fixed fraction α of its size. An algorithm may pay this fraction in order to postpone its decision on whether to include or reject the item until after the last item of the instance was presented.
While the classical Online Simple Knapsack Problem does not admit any constantly bounded competitive ratio in the deterministic setting, we find that adding the possibility of reservation makes the problem constantly competitive, with varying competitive ratios depending on the value of α. We give upper and lower bounds for the whole range of reservation costs, with tight bounds for costs up to 1/6 - an area that is strictly 2-competitive - , for costs between √2-1 and 1 - an area that is strictly (2+α)-competitive up to ϕ -1, and strictly 1/(1-α)-competitive above ϕ-1, where ϕ is the golden ratio.
With our analysis, we find a counterintuitive characteristic of the problem: Intuitively, one would expect that the possibility of rejecting items becomes more and more helpful for an online algorithm with growing reservation costs. However, for higher reservation costs above √2-1, an algorithm that is unable to reject any items tightly matches the lower bound and is thus the best possible. On the other hand, for any positive reservation cost smaller than 1/6, any algorithm that is unable to reject any items performs considerably worse than one that is able to reject.

Hans-Joachim Böckenhauer, Elisabet Burjons, Juraj Hromkovič, Henri Lotze, and Peter Rossmanith. Online Simple Knapsack with Reservation Costs. In 38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 187, pp. 16:1-16:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)

Copy BibTex To Clipboard

@InProceedings{bockenhauer_et_al:LIPIcs.STACS.2021.16, author = {B\"{o}ckenhauer, Hans-Joachim and Burjons, Elisabet and Hromkovi\v{c}, Juraj and Lotze, Henri and Rossmanith, Peter}, title = {{Online Simple Knapsack with Reservation Costs}}, booktitle = {38th International Symposium on Theoretical Aspects of Computer Science (STACS 2021)}, pages = {16:1--16:18}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-180-1}, ISSN = {1868-8969}, year = {2021}, volume = {187}, editor = {Bl\"{a}ser, Markus and Monmege, Benjamin}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.STACS.2021.16}, URN = {urn:nbn:de:0030-drops-136613}, doi = {10.4230/LIPIcs.STACS.2021.16}, annote = {Keywords: Online problem, Simple knapsack, Reservation costs} }

Document

**Published in:** LIPIcs, Volume 138, 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)

Can we efficiently compute optimal solutions to instances of a hard problem from optimal solutions to neighboring (i.e., locally modified) instances? For example, can we efficiently compute an optimal coloring for a graph from optimal colorings for all one-edge-deleted subgraphs? Studying such questions not only gives detailed insight into the structure of the problem itself, but also into the complexity of related problems; most notably graph theory’s core notion of critical graphs (e.g., graphs whose chromatic number decreases under deletion of an arbitrary edge) and the complexity-theoretic notion of minimality problems (also called criticality problems, e.g., recognizing graphs that become 3-colorable when an arbitrary edge is deleted).
We focus on two prototypical graph problems, Colorability and Vertex Cover. For example, we show that it is NP-hard to compute an optimal coloring for a graph from optimal colorings for all its one-vertex-deleted subgraphs, and that this remains true even when optimal solutions for all one-edge-deleted subgraphs are given. In contrast, computing an optimal coloring from all (or even just two) one-edge-added supergraphs is in P. We observe that Vertex Cover exhibits a remarkably different behavior, demonstrating the power of our model to delineate problems from each other more precisely on a structural level.
Moreover, we provide a number of new complexity results for minimality and criticality problems. For example, we prove that Minimal-3-UnColorability is complete for DP (differences of NP sets), which was previously known only for the more amenable case of deleting vertices rather than edges. For Vertex Cover, we show that recognizing beta-vertex-critical graphs is complete for Theta_2^p (parallel access to NP), obtaining the first completeness result for a criticality problem for this class.

Elisabet Burjons, Fabian Frei, Edith Hemaspaandra, Dennis Komm, and David Wehner. Finding Optimal Solutions With Neighborly Help. In 44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 138, pp. 78:1-78:14, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)

Copy BibTex To Clipboard

@InProceedings{burjons_et_al:LIPIcs.MFCS.2019.78, author = {Burjons, Elisabet and Frei, Fabian and Hemaspaandra, Edith and Komm, Dennis and Wehner, David}, title = {{Finding Optimal Solutions With Neighborly Help}}, booktitle = {44th International Symposium on Mathematical Foundations of Computer Science (MFCS 2019)}, pages = {78:1--78:14}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-117-7}, ISSN = {1868-8969}, year = {2019}, volume = {138}, editor = {Rossmanith, Peter and Heggernes, Pinar and Katoen, Joost-Pieter}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.MFCS.2019.78}, URN = {urn:nbn:de:0030-drops-110221}, doi = {10.4230/LIPIcs.MFCS.2019.78}, annote = {Keywords: Critical Graphs, Computational Complexity, Structural Self-Reducibility, Minimality Problems, Colorability, Vertex Cover, Satisfiability, Reoptimization, Advice} }

X

Feedback for Dagstuhl Publishing

Feedback submitted

Please try again later or send an E-mail