Published in: LIPIcs, Volume 338, 23rd International Symposium on Experimental Algorithms (SEA 2025)
Alejandro Cassis, Andreas Karrenbauer, André Nusser, and Paolo Luigi Rinaldi. Algorithm Engineering of SSSP with Negative Edge Weights. In 23rd International Symposium on Experimental Algorithms (SEA 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 338, pp. 10:1-10:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025)
@InProceedings{cassis_et_al:LIPIcs.SEA.2025.10, author = {Cassis, Alejandro and Karrenbauer, Andreas and Nusser, Andr\'{e} and Rinaldi, Paolo Luigi}, title = {{Algorithm Engineering of SSSP with Negative Edge Weights}}, booktitle = {23rd International Symposium on Experimental Algorithms (SEA 2025)}, pages = {10:1--10:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-375-1}, ISSN = {1868-8969}, year = {2025}, volume = {338}, editor = {Mutzel, Petra and Prezza, Nicola}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.SEA.2025.10}, URN = {urn:nbn:de:0030-drops-232486}, doi = {10.4230/LIPIcs.SEA.2025.10}, annote = {Keywords: Single Source Shortest Paths, Negative Weights, Near-Linear Time} }
Published in: LIPIcs, Volume 274, 31st Annual European Symposium on Algorithms (ESA 2023)
Karl Bringmann and Alejandro Cassis. Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution. In 31st Annual European Symposium on Algorithms (ESA 2023). Leibniz International Proceedings in Informatics (LIPIcs), Volume 274, pp. 24:1-24:16, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2023)
@InProceedings{bringmann_et_al:LIPIcs.ESA.2023.24, author = {Bringmann, Karl and Cassis, Alejandro}, title = {{Faster 0-1-Knapsack via Near-Convex Min-Plus-Convolution}}, booktitle = {31st Annual European Symposium on Algorithms (ESA 2023)}, pages = {24:1--24:16}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-295-2}, ISSN = {1868-8969}, year = {2023}, volume = {274}, editor = {G{\o}rtz, Inge Li and Farach-Colton, Martin and Puglisi, Simon J. and Herman, Grzegorz}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ESA.2023.24}, URN = {urn:nbn:de:0030-drops-186776}, doi = {10.4230/LIPIcs.ESA.2023.24}, annote = {Keywords: Knapsack, Fine-Grained Complexity, Min-Plus Convolution} }
Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. A Structural Investigation of the Approximability of Polynomial-Time Problems. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 30:1-30:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bringmann_et_al:LIPIcs.ICALP.2022.30, author = {Bringmann, Karl and Cassis, Alejandro and Fischer, Nick and K\"{u}nnemann, Marvin}, title = {{A Structural Investigation of the Approximability of Polynomial-Time Problems}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {30:1--30:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.30}, URN = {urn:nbn:de:0030-drops-163713}, doi = {10.4230/LIPIcs.ICALP.2022.30}, annote = {Keywords: Classification Theorems, Hardness of Approximation in P, Fine-grained Complexity Theory} }
Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Karl Bringmann and Alejandro Cassis. Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 31:1-31:21, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bringmann_et_al:LIPIcs.ICALP.2022.31, author = {Bringmann, Karl and Cassis, Alejandro}, title = {{Faster Knapsack Algorithms via Bounded Monotone Min-Plus-Convolution}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {31:1--31:21}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.31}, URN = {urn:nbn:de:0030-drops-163727}, doi = {10.4230/LIPIcs.ICALP.2022.31}, annote = {Keywords: Knapsack, Approximation Schemes, Fine-Grained Complexity, Min-Plus Convolution} }
Published in: LIPIcs, Volume 229, 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)
Karl Bringmann, Alejandro Cassis, Nick Fischer, and Vasileios Nakos. Improved Sublinear-Time Edit Distance for Preprocessed Strings. In 49th International Colloquium on Automata, Languages, and Programming (ICALP 2022). Leibniz International Proceedings in Informatics (LIPIcs), Volume 229, pp. 32:1-32:20, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022)
@InProceedings{bringmann_et_al:LIPIcs.ICALP.2022.32, author = {Bringmann, Karl and Cassis, Alejandro and Fischer, Nick and Nakos, Vasileios}, title = {{Improved Sublinear-Time Edit Distance for Preprocessed Strings}}, booktitle = {49th International Colloquium on Automata, Languages, and Programming (ICALP 2022)}, pages = {32:1--32:20}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-235-8}, ISSN = {1868-8969}, year = {2022}, volume = {229}, editor = {Boja\'{n}czyk, Miko{\l}aj and Merelli, Emanuela and Woodruff, David P.}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ICALP.2022.32}, URN = {urn:nbn:de:0030-drops-163734}, doi = {10.4230/LIPIcs.ICALP.2022.32}, annote = {Keywords: Edit Distance, Property Testing, Preprocessing, Precision Sampling} }
Published in: LIPIcs, Volume 207, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)
Karl Bringmann, Alejandro Cassis, Nick Fischer, and Marvin Künnemann. Fine-Grained Completeness for Optimization in P. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 207, pp. 9:1-9:22, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)
@InProceedings{bringmann_et_al:LIPIcs.APPROX/RANDOM.2021.9, author = {Bringmann, Karl and Cassis, Alejandro and Fischer, Nick and K\"{u}nnemann, Marvin}, title = {{Fine-Grained Completeness for Optimization in P}}, booktitle = {Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2021)}, pages = {9:1--9:22}, series = {Leibniz International Proceedings in Informatics (LIPIcs)}, ISBN = {978-3-95977-207-5}, ISSN = {1868-8969}, year = {2021}, volume = {207}, editor = {Wootters, Mary and Sanit\`{a}, Laura}, publisher = {Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik}, address = {Dagstuhl, Germany}, URL = {https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2021.9}, URN = {urn:nbn:de:0030-drops-147024}, doi = {10.4230/LIPIcs.APPROX/RANDOM.2021.9}, annote = {Keywords: Fine-grained Complexity \& Algorithm Design, Completeness, Hardness of Approximation in P, Dimensionality Reductions} }
Feedback for Dagstuhl Publishing