Search Results

Documents authored by Cervenjak, Philip


Document
APPROX
Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound

Authors: Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth

Published in: LIPIcs, Volume 317, Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)


Abstract
We consider the Max Unique Coverage problem, including applications to the data stream model. The input is a universe of n elements, a collection of m subsets of this universe, and a cardinality constraint, k. The goal is to select a subcollection of at most k sets that maximizes unique coverage, i.e, the number of elements contained in exactly one of the selected sets. The Max Unique Coverage problem has applications in wireless networks, radio broadcast, and envy-free pricing. Our first main result is a fixed-parameter tractable approximation scheme (FPT-AS) for Max Unique Coverage, parameterized by k and the maximum element frequency, r, which can be implemented on a data stream. Our FPT-AS finds a (1-ε)-approximation while maintaining a kernel of size Õ(k r/ε), which can be combined with subsampling to use Õ(k² r / ε³) space overall. This significantly improves on the previous-best FPT-AS with the same approximation, but a kernel of size Õ(k² r / ε²). In order to achieve our first result, we show upper bounds on the ratio of a collection’s coverage to the unique coverage of a maximizing subcollection; this is by constructing explicit algorithms that find a subcollection with unique coverage at least a logarithmic ratio of the collection’s coverage. We complement our algorithms with our second main result, showing that Ω(m / k²) space is necessary to achieve a (1.5 + o(1))/(ln k - 1)-approximation in the data stream. This dramatically improves the previous-best lower bound showing that Ω(m / k²) is necessary to achieve better than a e^{-1+1/k}-approximation.

Cite as

Philip Cervenjak, Junhao Gan, Seeun William Umboh, and Anthony Wirth. Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024). Leibniz International Proceedings in Informatics (LIPIcs), Volume 317, pp. 25:1-25:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2024)


Copy BibTex To Clipboard

@InProceedings{cervenjak_et_al:LIPIcs.APPROX/RANDOM.2024.25,
  author =	{Cervenjak, Philip and Gan, Junhao and Umboh, Seeun William and Wirth, Anthony},
  title =	{{Maximum Unique Coverage on Streams: Improved FPT Approximation Scheme and Tighter Space Lower Bound}},
  booktitle =	{Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2024)},
  pages =	{25:1--25:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-348-5},
  ISSN =	{1868-8969},
  year =	{2024},
  volume =	{317},
  editor =	{Kumar, Amit and Ron-Zewi, Noga},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  URN =		{urn:nbn:de:0030-drops-210183},
  doi =		{10.4230/LIPIcs.APPROX/RANDOM.2024.25},
  annote =	{Keywords: Maximum unique coverage, maximum coverage, approximate kernel, data streams}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail