Search Results

Documents authored by Cervin, Anton


Document
Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses

Authors: Nils Vreman, Anton Cervin, and Martina Maggio

Published in: LIPIcs, Volume 196, 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)


Abstract
Control systems are by design robust to various disturbances, ranging from noise to unmodelled dynamics. Recent work on the weakly hard model - applied to controllers - has shown that control tasks can also be inherently robust to deadline misses. However, existing exact analyses are limited to the stability of the closed-loop system. In this paper we show that stability is important but cannot be the only factor to determine whether the behaviour of a system is acceptable also under deadline misses. We focus on systems that experience bursts of deadline misses and on their recovery to normal operation. We apply the resulting comprehensive analysis (that includes both stability and performance) to a Furuta pendulum, comparing simulated data and data obtained with the real plant. We further evaluate our analysis using a benchmark set composed of 133 systems, which is considered representative of industrial control plants. Our results show the handling of the control signal is an extremely important factor in the performance degradation that the controller experiences - a clear indication that only a stability test does not give enough indication about the robustness to deadline misses.

Cite as

Nils Vreman, Anton Cervin, and Martina Maggio. Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses. In 33rd Euromicro Conference on Real-Time Systems (ECRTS 2021). Leibniz International Proceedings in Informatics (LIPIcs), Volume 196, pp. 15:1-15:23, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2021)


Copy BibTex To Clipboard

@InProceedings{vreman_et_al:LIPIcs.ECRTS.2021.15,
  author =	{Vreman, Nils and Cervin, Anton and Maggio, Martina},
  title =	{{Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses}},
  booktitle =	{33rd Euromicro Conference on Real-Time Systems (ECRTS 2021)},
  pages =	{15:1--15:23},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-192-4},
  ISSN =	{1868-8969},
  year =	{2021},
  volume =	{196},
  editor =	{Brandenburg, Bj\"{o}rn B.},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2021.15},
  URN =		{urn:nbn:de:0030-drops-139460},
  doi =		{10.4230/LIPIcs.ECRTS.2021.15},
  annote =	{Keywords: Fault-Tolerant Control Systems, Weakly Hard Task Model}
}
Document
Complete Volume
OASIcs, Volume 80, Fog-IoT 2020, Complete Volume

Authors: Anton Cervin and Yang Yang

Published in: OASIcs, Volume 80, 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)


Abstract
OASIcs, Volume 80, Fog-IoT 2020, Complete Volume

Cite as

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Open Access Series in Informatics (OASIcs), Volume 80, pp. 1-110, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@Proceedings{cervin_et_al:OASIcs.Fog-IoT.2020,
  title =	{{OASIcs, Volume 80, Fog-IoT 2020, Complete Volume}},
  booktitle =	{2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)},
  pages =	{1--110},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-144-3},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{80},
  editor =	{Cervin, Anton and Yang, Yang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Fog-IoT.2020},
  URN =		{urn:nbn:de:0030-drops-119933},
  doi =		{10.4230/OASIcs.Fog-IoT.2020},
  annote =	{Keywords: OASIcs, Volume 80, Fog-IoT 2020, Complete Volume}
}
Document
Front Matter
Front Matter, Table of Contents, Preface, Conference Organization

Authors: Anton Cervin and Yang Yang

Published in: OASIcs, Volume 80, 2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)


Abstract
Front Matter, Table of Contents, Preface, Conference Organization

Cite as

2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020). Open Access Series in Informatics (OASIcs), Volume 80, pp. 0:i-0:viii, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2020)


Copy BibTex To Clipboard

@InProceedings{cervin_et_al:OASIcs.Fog-IoT.2020.0,
  author =	{Cervin, Anton and Yang, Yang},
  title =	{{Front Matter, Table of Contents, Preface, Conference Organization}},
  booktitle =	{2nd Workshop on Fog Computing and the IoT (Fog-IoT 2020)},
  pages =	{0:i--0:viii},
  series =	{Open Access Series in Informatics (OASIcs)},
  ISBN =	{978-3-95977-144-3},
  ISSN =	{2190-6807},
  year =	{2020},
  volume =	{80},
  editor =	{Cervin, Anton and Yang, Yang},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.Fog-IoT.2020.0},
  URN =		{urn:nbn:de:0030-drops-119944},
  doi =		{10.4230/OASIcs.Fog-IoT.2020.0},
  annote =	{Keywords: Front Matter, Table of Contents, Preface, Conference Organization}
}
Document
Artifact
DMAC: Deadline-Miss-Aware Control (Artifact)

Authors: Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin

Published in: DARTS, Volume 5, Issue 1, Special Issue of the 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
The real-time implementation of periodic controllers requires solving a co-design problem, in which the choice of the controller sampling period is a crucial element. Classic design techniques limit the period exploration to safe values, that guarantee the correct execution of the controller alongside the remaining real-time load, i.e., ensuring that the controller worst-case response time does not exceed its deadline. This paper presents the artifact linked to DMAC: the first formally-grounded controller design strategy that explores shorter periods, thus explicitly taking into account the possibility of missing deadlines. The experimental results obtained with this artifact show that the DMAC design proposal - i.e., exploring the space where deadlines can be missed and handled with different strategies - greatly outperforms classical control design techniques.

Cite as

Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin. DMAC: Deadline-Miss-Aware Control (Artifact). In Special Issue of the 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Dagstuhl Artifacts Series (DARTS), Volume 5, Issue 1, pp. 3:1-3:3, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@Article{pazzaglia_et_al:DARTS.5.1.3,
  author =	{Pazzaglia, Paolo and Mandrioli, Claudio and Maggio, Martina and Cervin, Anton},
  title =	{{DMAC: Deadline-Miss-Aware Control}},
  pages =	{3:1--3:3},
  journal =	{Dagstuhl Artifacts Series},
  ISSN =	{2509-8195},
  year =	{2019},
  volume =	{5},
  number =	{1},
  editor =	{Pazzaglia, Paolo and Mandrioli, Claudio and Maggio, Martina and Cervin, Anton},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/DARTS.5.1.3},
  URN =		{urn:nbn:de:0030-drops-107315},
  doi =		{10.4230/DARTS.5.1.3},
  annote =	{Keywords: Weakly-Hard Real-Time Systems, Deadline Miss Handling, Control Design}
}
Document
DMAC: Deadline-Miss-Aware Control

Authors: Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin

Published in: LIPIcs, Volume 133, 31st Euromicro Conference on Real-Time Systems (ECRTS 2019)


Abstract
The real-time implementation of periodic controllers requires solving a co-design problem, in which the choice of the controller sampling period is a crucial element. Classic design techniques limit the period exploration to safe values, that guarantee the correct execution of the controller alongside the remaining real-time load, i.e., ensuring that the controller worst-case response time does not exceed its deadline. This paper presents DMAC: the first formally-grounded controller design strategy that explores shorter periods, thus explicitly taking into account the possibility of missing deadlines. The design leverages information about the probability that specific sub-sequences of deadline misses are experienced. The result is a fixed controller that on average works as the ideal clairvoyant time-varying controller that knows future deadline hits and misses. We obtain a safe estimate of the hit and miss events using the scenario theory, that allows us to provide probabilistic guarantees. The paper analyzes controllers implemented using the Logical Execution Time paradigm and three different strategies to handle deadline miss events: killing the job, letting the job continue but skipping the next activation, and letting the job continue using a limited queue of jobs. Experimental results show that our design proposal - i.e., exploring the space where deadlines can be missed and handled with different strategies - greatly outperforms classical control design techniques.

Cite as

Paolo Pazzaglia, Claudio Mandrioli, Martina Maggio, and Anton Cervin. DMAC: Deadline-Miss-Aware Control. In 31st Euromicro Conference on Real-Time Systems (ECRTS 2019). Leibniz International Proceedings in Informatics (LIPIcs), Volume 133, pp. 1:1-1:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2019)


Copy BibTex To Clipboard

@InProceedings{pazzaglia_et_al:LIPIcs.ECRTS.2019.1,
  author =	{Pazzaglia, Paolo and Mandrioli, Claudio and Maggio, Martina and Cervin, Anton},
  title =	{{DMAC: Deadline-Miss-Aware Control}},
  booktitle =	{31st Euromicro Conference on Real-Time Systems (ECRTS 2019)},
  pages =	{1:1--1:24},
  series =	{Leibniz International Proceedings in Informatics (LIPIcs)},
  ISBN =	{978-3-95977-110-8},
  ISSN =	{1868-8969},
  year =	{2019},
  volume =	{133},
  editor =	{Quinton, Sophie},
  publisher =	{Schloss Dagstuhl -- Leibniz-Zentrum f{\"u}r Informatik},
  address =	{Dagstuhl, Germany},
  URL =		{https://drops.dagstuhl.de/entities/document/10.4230/LIPIcs.ECRTS.2019.1},
  URN =		{urn:nbn:de:0030-drops-107387},
  doi =		{10.4230/LIPIcs.ECRTS.2019.1},
  annote =	{Keywords: Weakly-Hard Real-Time Systems, Deadline Miss Handling, Control Design}
}
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail